Загадочный беспорядок: история фракталов и области их применения. Введение во фракталы

Муниципальное бюджетное образовательное учреждение

«Сиверская средняя общеобразовательная школа №3»

Исследовательская работа

по математике.

Выполнил работу

ученик 8-1 класса

Емелин Павел

Научный руководитель

учитель математики

Тупицына Наталья Алексеевна

п. Сиверский

2014 год

Математика вся пронизана красотой и гармонией,

Только эту красоту надо увидеть.

Б. Мандельброт

Введение____________________________________3-4стр.

Глава 1.история возникновения фракталов._______5-6стр.

Глава 2. Классификация фракталов._____________6-10стр.

Геометрические фракталы

Алгебраические фракталы

Стохастические фракталы

Глава 3."Фрактальная геометрия природы"______11-13стр.

Глава 4. Применение фракталов_______________13-15стр.

Глава 5 Практические работы__________________16-24стр.

Заключение_________________________________25.стр

Список литературы и интернет ресурсов________26стр.

Введение

Математика,

если на нее правильно посмотреть,

отражает не только истину,

но и несравненную красоту.

Бертранд Рассел


Слово “фрактал” - это что-то, о чем много людей говорит в наши дни, от ученых до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные изображения фракталов сегодня можно найти везде: от открыток, футболок до картинок на рабочем столе персонального компьютера. Итак, что это за цветные формы, которые мы видим вокруг?

Математика – древнейшая наука. Большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, многоугольник, сфера и т.д. Как оказалось многие природные системы настолько сложны, что использование только знакомых объектов обычной геометрии для их моделирования представляется безнадежным. Как, к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических разнообразий, которое мы наблюдаем в мире растений и животных? Как представить всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела? Представить строение легких и почек, напоминающие по структуре деревья с ветвистой кроной?

Фракталы - подходящие средства для исследования поставленных вопросов. Нередко то, что мы видим в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько-то раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды --- вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Изучение фракталов открывает замечательные возможности, как в исследовании бесконечного числа приложений, так и в области математики. Применение фракталов очень обширно! Ведь эти объекты настолько красивы, что их используют дизайнеры, художники, с помощью них в графике рисуются многие элементы деревья, облака, горы и т.д. А ведь фракталы используются даже как антенны во многих сотовых телефонах.

Для многих хаологов (ученых изучающих фракталы и хаос) – это не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии - это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной .

В своей работе я тоже решил «прикоснуться» к миру прекрасного и определил для себя…

Цель работы : создание объектов, образы которых весьма похожи на природные.

Методы исследования : сравнительный анализ, синтез, моделирование.

Задачи :

    знакомство с понятием, историей возникновения и исследованиями Б.Мандельброта,

Г. Коха, В. Серпинского и др.;

    знакомство с различными видами фрактальных множеств;

    изучение научно-популярной литературы по данному вопросу, знакомство с

научными гипотезами;

    нахождение подтверждения теории фрактальности окружающего мира;

    изучение применения фракталов в других науках и на практике;

    проведение эксперимента по созданию собственных фрактальных изображений.

Основополагающий вопрос работы:

Показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Предмет исследования : Фрактальная геометрия.

Объект исследования : фракталы в математике и в реальном мире.

Гипотеза : Все, что существует в реальном мире, является фракталом.

Методы исследования : аналитический, поисковый.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Ожидаемые результаты: В ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов.

Итогом работы будет создание компьютерной презентации, бюллетеня и буклета.

Глава 1.История возникновения

Бенуа Мандельброт

Понятие «фрактал» придумал Бенуа Мандельброт. Слово происходит от латинского «fractus», означающего «сломанный, разбитый».

Фрактал (лат. fractus - дробленый, сломанный, разбитый) - термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.

Для математических объектов, к которым оно относится, характерны чрезвычайно интересные свойства. В обычной геометрии линия имеет одно измерение, поверхность - два измерения, а пространственная фигура трехмерна. Фракталы же - это не линии и не поверхности, а, если можно это себе представить, нечто среднее. С ростом размеров возрастает и объем фрактала, но его размерность (показатель степени) - величина не целая, а дробная, а потому граница фрактальной фигуры не линия: при большом увеличении становится видно, что она размыта и состоит из спиралей и завитков, повторяющих в малом масштабе саму фигуру. Такая геометрическая регулярность называется масштабной инвариантностью или самоподобием. Она-то и определяет дробную размерность фрактальных фигур.

До появления фрактальной геометрии наука имела дело с системами, заключенными в трех пространственных измерениях. Благодаря Эйнштейну стало понятно, что трехмерное пространство - только модель действительности, а не сама действительность. Фактически наш мир расположен в четырехмерном пространственно-временном континууме.
Благодаря Мандельброту стало понятно, как выглядит четырехмерное пространство, образно выражаясь, фрактальное лицо Хаоса. Бенуа Мандельброт обнаружил, что четвертое измерение включает в себя не только первые три измерения, но и (это очень важно!) интервалы между ними.

Рекурсивная (или фрактальная) геометрия идет на смену Евклидовой. Новая наука способна описать истинную природу тел и явлений. Евклидова геометрия имела дело только с искусственными, воображаемыми объектами, принадлежащими трем измерениям. В реальность их способно превратить только четвертое измерение.

Жидкость, газ, твердое тело - три привычных физических состояния вещества, существующего в трехмерном мире. Но какова размерность клуба дыма, облака, точнее, их границ, непрерывно размываемых турбулентным движением воздуха?

В основном фракталы классифицируют по трём группам:

    Алгебраические фракталы

    Стохастические фракталы

    Геометрические фракталы

Рассмотрим подробнее каждую из них.

Глава 2. Классификация фракталов

Геометрические фракталы

Бенуа Мандельброт предложил модель фрактала, которая уже стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.

Фракталы этого класса самые наглядные, потому что в них сразу видна самоподобность при любых масштабах наблюдения. В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а, точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора. Примерами таких кривых служат: кривая Коха (Рис.7), кривая Пeано (Рис.8), кривая Минковского.

В начале ХХ века математики искали такие кривые, которые ни в одной точке не имеют касательной. Это означало, что кривая резко меняет свое направление, и притом с колоссально большой скоростью (производная равна бесконечности). Поиски данных кривых были вызваны не просто праздным интересом математиков. Дело в том, что в начале ХХ века очень бурно развивалась квантовая механика. Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую.

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д…

Предельная кривая и есть кривая Коха.


Снежинка Коха. Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

Т
акже ещё одним несложным представителем геометрического фрактала является квадрат Серпинского. Строится он довольно таки просто: Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множесто, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Это самая крупная группа фракталов. Алгебраические фракталы получили свое название за то, что их строят, используя простые алгебраические формулы.

Получают их с помощью нелинейных процессов в n -мерных пространствах. Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом, фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные структуры.



В качестве примера рассмотрим множество Мандельброта. Строят его с помощью комплексных чисел.

Участок границы множества Мандельброта, увеличенный в 200 раз.

Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки, имеющие черный цвет). Точки, принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки, лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

П



ример другого алгебраического фрактала – множество Жюлиа. Существует 2 разновидности этого фрактала. Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество.

И
нтересный факт
, некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д.

Типичным представителем этой группы фракталов является «плазма».

Д
ля ее построения берется прямоугольник и для каждого его угла определяется цвет. Далее находится центральная точка прямоугольника и раскрашивается в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если же предположить, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладывается текстура и фотореалистичные горы готовы

Е
сли посмотреть на этот фрактал в разрезе то мы увидим этот фрактал объемный, и имеет «шероховатость», как раз из-за этой «шероховатости» есть очень важное применение этого фрактала.

Допустим нужно описать форму горы. Обычные фигуры из Евклидовой геометрии тут не помогут, ведь они не учитывают рельеф поверхности. Но при совмещении обычной геометрии с фрактальной можно получить ту самую «шероховатость» горы. На обычный конус нужно наложить плазму и мы получим рельеф горы. Такие операции можно выполнять со многими другими объектами в природе, благодаря стохастическим фракталам можно описать саму природу.

Теперь поговорим о геометрических фракталах.

.

Глава 3 "Фрактальная геометрия природы"

" Почему геометрию часто называют "холодной" и "сухой"? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака - не сферы, горы - не конусы, береговые линии - не окружности, древесная кора не гладкая, молния распространяется не по прямой. В более общем плане я утверждаю, что многие объекты в Природе настолько иррегулярные и фрагментированы, что по сравнению с Евклидом - термин, который в этой работе означает всю стандартную геометрию, - Природа обладает не просто большей сложностью, а сложностью совершенно иного уровня. Число различных масштабов длины природных объектов для всех практических целей бесконечно".

(Бенуа Мандельброт "Фрактальная геометрия природы").

Красота фракталов двояка: она услаждает глаз, о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой бременских математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге тех же авторов "Красота фракталов". Но существует и другой, более абстрактный или возвышенный, аспект красоты фракталов, открытый, по словам Р. Фейнмана, только умственному взору теоретика, в этом смысле фракталы прекрасны красотой трудной математической задачи. Бенуа Мандельброт указал современникам (и, надо полагать, потомкам) на досадный пробел в "Началах" Евклида, по которому, не замечая упущения, почти два тысячелетия человечества постигало геометрию окружающего мира и училось математической строгости изложения. Разумеется, оба аспекта красоты фракталов тесно взаимосвязаны и не исключают, а взаимно дополняют друг друга, хотя каждый из них самодостаточен.

Фрактальная геометрия природы по Мандельброту - самая настоящая геометрия, удовлетворяющая определению геометрии, предложенному в "Эрлангенскрй программе" Ф. Клейна. Дело в том, что до появления неевклидовой геометрии Н.И. Лобачевского - Л. Больяи, существовала только одна геометрия - та, которая была изложена в "Началах", и вопрос о том, что такое геометрия и какая из геометрий является геометрией реального мира, не возникал, да и не мог возникнуть. Но с появлением еще одной геометрии возник вопрос, что такое геометрия вообще, и какая из множества геометрий отвечает реальному миру. По Ф.Клейну, геометрия занимается изучением таких свойств объектов, которые инвариантны относительно преобразований: евклидова - инвариантов группы движений (преобразований, не изменяющих расстояния между любыми двумя точками, т.е. представляющих суперпозицию параллельных переносов и вращений с изменением или без изменения ориентации), геометрия Лобачевского-Больяи - инвариантов группы Лоренца. Фрактальная геометрия занимается изучением инвариантов группы самоаффинных преобразований, т.е. свойств, выражаемых степенными законами.

Что же касается соответствия реальному миру, то фрактальная геометрия описывает весьма широкий класс природных процессов и явлений, и поэтому мы можем вслед за Б.Мандельбротом с полным правом говорить о фрактальной геометрии природы. Новые - фрактальные объекты обладают необычными свойствами. Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:


Морские раковины


Молнии восхищают своей красотой. Фракталы, созданные молнией не произвольны и не регулярны


Фрактальная форма подвида цветной капусты (Brassica cauliflora). Это особый вид является особенно симметричным фракталом.

Папоротник так же является хорошим примером фрактала среди флоры.


Павлины всем известны своим красочным опереньем, в котором спрятаны сплошные фракталы.


Лёд, морозные узоры на окнах это тоже фракталы


О
т увеличенного изображения листочка , до ветвей дерева - во всём можно обнаружить фракталы

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц? Едва ли.

Глава 4. Применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

О
дни из наиболее мощных приложений фракталов лежат в компьютерной графике . Это фрактальное сжатие изображений. Современная физика и механика только начинают изучать поведение фрактальных объектов.

Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации (плохого качества изображения – большими квадратами). Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

Компанией Iterated разработан новый формат изображений "Sting", сочетающий в себе фрактальное и «волновое» (такое как в формате jpeg) сжатие без потерь. Новый формат позволяет создавать изображения с возможностью последующего высококачественного масштабирования, причем объем графических файлов составляет 15-20% от объема несжатых изображений.

В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных). Фрактальные модели, как и природные объекты, обладают "шероховатостью", и свойство это сохраняется при сколь угодно большом увеличении модели. Наличие на фракталах равномерной меры, позволяет применять интегрирование, теорию потенциала, использовать их вместо стандартных объектов в уже исследованных уравнениях.

Т
акже фрактальную геометрию используют для проектировании антенных устройств . Впервые это было применено американским инженером Натаном Коэном, который жил тогда в центре Бостона, где была запрещена установка на зданиях внешних антенн. Коэн вырезал из алюминиевой фольги фигуру в форме кривой Коха и затем наклеил ее на лист бумаги, а затем присоединил к приемнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы такой антенны не изучены до сих пор, это не помешало Коэну обосновать собственную компанию и наладить их серийный выпуск. В данный момент американская фирма “Fractal Antenna System”разработала антенну нового типа. Теперь можно отказаться от использования в мобильных телефонах торчащих наружных антенн. Так называемая фрактальная антенна располагается прямо на основной плате внутри аппарата.

Также существуют множество гипотез по поводу применения фракталов – например, лимфатическая и кровеносная системы, лёгкие и многое другое тоже имеют фрактальные свойства.

Глава 5. Практические работы.

Сначала остановимся на фракталах «Ожерелье», «Победа» и «Квадрат».

Первое – «Ожерелье» (рис. 7). Инициатором данного фрактала является окружность. Эта окружность состоит из определенного числа таких же окружностей, но меньших размеров, а сама же она является одной из нескольких окружностей, представляющих собой такую же, но больших размеров. Так процесс образования бесконечен и его можно вести как в ту, так и в обратную сторону. Т.е. фигуру можно увеличивать, взяв всего одну маленькую дугу, а можно уменьшать, рассматривая построение ее из более мелких.


рис. 7.

Фрактал «Ожерелье»

Второй фрактал – это «Победа» (рис.8). Такое название он получил потому, что внешне напоминает латинскую букву “V ”, то есть “victory ”-победа. Этот фрактал состоит из определенного числа маленьких “v ”, составляющих одну большую “V ”, причем в левой половине, которой маленькие ставятся так, чтобы их левые половины составляли одну прямую, правая часть строится так же. Каждая из этих “v ” строится таким же образом и продолжается это до бесконечности.


Рис.8. Фрактал «Победа»

Третий фрактал – это «Квадрат» (рис. 9) . Каждая из его сторон состоит из одного ряда ячеек, по форме представляющих квадраты, стороны которых также представляют ряды ячеек и т.д.


Рис.9.Фрактал «Квадрат»

Фрактал был назван «Роза» (рис. 10), в силу внешнего сходства с данным цветком. Построение фрактала связано с построением ряда концентрических окружностей, радиус которых изменяется пропорционально заданному отношению (в данном случае R м / R б = ¾ = 0,75.). После чего в каждую окружность вписываются правильные шестиугольник, сторона которого равна радиусу описанной около него окружности.



Рис. 11. Фрактал «Роза * »

Далее обратимся к правильному пятиугольнику, в котором проведём его диагонали. Затем в получившемся в при пересечении соответствующих отрезков пятиугольнике снова проведём диагонали. Продолжим данный процесс до бесконечности и получим фрактал «Пентаграмма» (рис. 12).

Введём элемент творчества и наш фрактал примет вид более наглядного объекта (рис. 13).


Р
ис. 12. Фрактал «Пентаграмма».

Рис. 13. Фрактал «Пентаграмма * »


Рис. 14 фрактал «Черная дыра»

Эксперимент № 1 «Дерево»

Теперь, когда я понял что такое фрактал и как его строить, я попробовал создать свои собственные фрактальные изображения. В программе Adobe Photoshop я создал небольшую подпрограмму или action , особенность этого экшена заключается в том, что он повторяет действия, которые я проделываю, и так у меня получается фрактал.


Для начала я создал фон для нашего будущего фрактала с разрешением 600 на 600. Дальше я нарисовал на этом фоне 3 линии - основу нашего будущего фрактала.




С ледующим шагом будет запись скрипта.

продублируем слой (layer > duplicate ) и изменим тип смешивания на "Screen " .

Назовём его "fr1 ". Скопируем этот слой ("fr1 ") еще 2 раза.

Теперь надо переключиться на последний слой (fr3 ) и дважды слить его с предыдущим (Ctrl+E ). Уменьшить яркость слоя (Image > Ajustments > Brightness/Contrast , яркость установить 50% ). Опять слить с предыдущим слоем и обрезать края всего рисунка, чтобы убрать невидимые части.

Последним шагом я копировал это изображение и вставлял его с уменьшением и поворотом. Вот что получилось в конечном результате.


Заключение

Данная работа является введением в мир фракталов. Мы рассмотрели только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся.

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Вся окружающая нас природа состоит из них. Нельзя не отметить широкое применение фракталов в компьютерных играх, где рельефы местности зачастую являются фрактальными изображениями на основе трёхмерных моделей комплексных множеств. Фракталы очень сильно облегчают рисование компьютерной графики, с помощью фракталов создаются множество спецэффектов, различных сказочных и невероятных картинок и т.д. Также с помощью фрактальной геометрии рисуются деревья, облака, берега и вся другая природа. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

В будущем я планирую научиться строить алгебраические фракталы, когда более подробно изучу комплексные числа. Также хочу попробовать построить свои фрактальные изображение в языке программирования Паскаль с помощью циклов.

Следует отметить применение фракталов в компьютерных технологиях, помимо просто построения красивых изображений на экране компьютера. Фракталы в компьютерных технологиях применяются в следующих областях:

1. Сжатие изображений и информации

2. Сокрытие информации на изображении, в звуке,…

3. Шифрование данных с помощью фрактальных алгоритмов

4. Создание фрактальной музыки

5. Моделирование систем

В нашей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хотим только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков, движение цен на бирже и развитие общества и семьи. Может быть, в первое время данное увлечение фракталами было даже слишком бурным и попытки все объяснять с помощью теории фракталов были неоправданными. Но, без сомнения, данная теория имеет право на существование, и мы сожалеем, что в последнее время она как-то забылась и осталась уделом избранных. При подготовке данной работы нам было очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что очень часто возникает такое ощущение, что теоретические знания стоят в стороне от жизненной реальности.

Таким образом, концепция фракталов становится не только частью “чистой” науки, но и элементом общечеловеческой культуры. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

10. Список литературы

    Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2001 г.

    Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995

    Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.

    Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002.

    Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.

    Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993.

Интернет ресурсы

http://www.ghcube.com/fractals/determin.html

http://fractals.nsu.ru/fractals.chat.ru/

http://fractals.nsu.ru/animations.htm

http://www.cootey.com/fractals/index.html

http://fraktals.ucoz.ru/publ

http://sakva .narod .ru

http://rusnauka.narod.ru/lib/author/kosinov_n/12/

http://www.cnam.fr/fractals/

http://www.softlab.ntua.gr/mandel/

http://subscribe.ru/archive/job.education.maths/201005/06210524.html


МИНИСТЕРСТВО ВЫСШЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ИРКУТСКАЯ ГОСУДАРСТВЕННАЯ ЭКОНОМИЧЕСКАЯ АКАДЕМИЯ

КАФЕДРА ИНФОРМАЦИОННЫХ СИСТЕМ

По экономико-математическим моделям и методам

ТЕОРИЯ ФРАКТАЛОВ И ЕЕ ПРИМЕНЕНИЕ

Подготовили: Руководитель:

Погодаева Е. А. Толстикова Т.В.

Четвериков С.В.

ИРКУТСК 1997

Все образы схожи, и

Все же ни один на дру

Гой не похож; Хоры их

На тайный закон указу-

Ют, на святую загадку...

И. В. Гете.

Метаморфоз растений.

ПОЧЕМУ МЫ ЗАГОВОРИЛИ О ФРАКТАЛАХ?

Во второй половине нашего века в естествознании произошли
фундаментальные изменения, породившие так называемую теорию
самоорганизации, или синергетику. Она родилась внезапно, как бы на
скрещении нескольких линий научного исследования. Один из решающих
начальных импульсов был предан ей российскими учеными на рубеже
пятидесятых - шестидесятых годов. В пятидесятых годах ученый
химик-аналитик Б. П. Белоусов открыл окислительно-восстановительную
химическую реакцию. Открытие и изучение автоколебаний и автоволн в ходе
реакции Белоусова

С. Э. Шнолем, А. М. Жаботинским, В.И. Кринским, А. Н. Заикиным, Г. Р.
Иваницким- едва ли не самая блестящая страница фундаментальной
российской науки в послевоенный период. Быстрое и успешное изучение
реакции Белоусова - Жаботинского сработало в науке как спусковой
крючок: сразу вспомнили, что и раньше были известны процессы подобного
рода и что многие природные явления, начиная от образования галактик
до смерчей, циклонов и игры света на отражающих поверхностях(так
называемых каустиках), - по сути дела процессы самоорганизации. Они
могут иметь самую различную природу: химическую, механическую,
оптическую, электрическую и тому подобное. Более того, оказалось, что
уже давно была готова и прекрасно разработана математическая теория
самоорганизации. Ее основу заложили работы А. Пуанкаре и А. А.
Ляпунова еще в конце прошлого века. Диссертация "Об устойчивости
движения" написана Ляпуновым в 1892 году.

Математическая теория самоорганизации заставляет нас по-новому
взглянуть на окружающий нас мир. Объясним, чем она отличается от
классического мировоззрения, так как нам это будет необходимо знать при
изучении фрактальных объектов.

"Классическое однозначно - детерминистическое мировоззрение
может символизироваться ровной гладкой поверхностью, на которой
соударяются шары, получившие определенный количества движения.
Будущая судьба каждого такого тела однозначно определена его
"прошлым" в предыдущий момент времени (количеством движения, зарядом) и
взаимодействием с другими телами. Никакой целостностью такая система
не обладает." (Л. Белоусов. Посланники живой грозы. \\ Знание- сила. N
2. 1996. - с.32). Таким образом, классическая наука верила, что будущее
такой системы жестко и однозначно определено ее прошлым и, при условии
знания прошлого, неограниченно предсказуемо.

Современная математика показала, что в некоторых случаях это не
так: например, если шары ударяются о выпуклую стенку, то ничтожно малые
различия в их траекториях будут неограниченно нарастать, так что
поведение системы становиться в определенный момент непредсказуемым.
Тем самым позиции однозначного детерминизма оказались подорванными даже
в сравнительно простых ситуациях.

Мировоззрение, основанное на теории самоорганизации,
символизируется образом горной страны с долинами, по которым текут реки,
и хребтами-водоразделами. В этой стране действуют мощные обратные связи
- как отрицательные, так и положительные. Если тело скатывается вниз
по склону, то между его скоростью и положением существует положительная
обратная связь, если оно пытается взобраться вверх, то отрицательная.
Нелинейные (достаточно сильные) обратные связи – непременное условие
самоорганизации. Нелинейность в мировоззренческом смысле означает
многовариантность путей эволюции, наличие выбора из альтернативных путей
и определенного темпа эволюции, а также необратимость эволюционных
процессов. Например, рассмотрим взаимодействие двух тел: А и В. В –
упругий древесный ствол, А – горный поток в нашей стране. Поток сгибает
ствол по направлению движения воды, но по достижении некоторого
изгиба ствол под действием упругой силы может распрямиться, отталкивая
частицы воды обратно. То есть мы видим альтернативу взаимодействия
двух тел А и В. Причем, это взаимодействие происходит таким образом,
что связь А-В - положительна, а В-А - отрицательна. Соблюдается условие
нелинейности.

Более того, в теории самоорганизации мы можем заставить нашу
горную страну "жить", то есть изменяться во времени. При этом важно
выделить переменные различного порядка. Такая иерархия переменных по
времени является необходимым условием упорядочения самоорганизации.
Нарушьте ее, "смешайте" времена- наступит хаос(пример- землетрясение,
когда сдвиги геологического порядка происходят за считанные минуты, а
должны- за несколько тысячелетий).Впрочем, как выявляется, живые
системы не так уж и боятся хаоса: они все время живут на его пределе,
иногда даже впадая в него, но все же умеют, когда надо, из него
выбираться. При этом самыми важными оказываются наиболее медленные по
времени переменные (их называют параметрами). Именно значения параметров
определяют, каким набором устойчивых решений будет обладать система и,
таким образом, какие структуры могут быть в ней вообще реализованы. В
то же время более быстрые

(динамические) переменные отвечают за конкретный выбор реализуемых
устойчивых состояний из числа возможных.

Принципы нелинейности и альтернативы выбора развития любого
процесса, развития системы реализуется и при построении фракталов.

Как стало ясно в последние десятилетия (в связи с развитием теории
самоорганизации), самоподобие встречается в самых разных предметах и
явлениях. Например, самоподобие можно наблюдать в ветках деревьев и
кустарников, при делении оплодотворенной зиготы, снежинках, кристаллах
льда, при развитии экономических систем (волны Кондратьева), строении
горных систем, в строении облаков. Все перечисленные объекты и другие,
подобные им по своей структуре, называются фрактальными. То есть они
обладают свойствами самоподобия, или масштабной инвариантности. А это
значит, что некоторые фрагменты их структуры строго повторяются через
определенные пространственные промежутки. Очевидно, что эти объекты
могут иметь любую природу, причем их вид и форма остаются неизменными
независимо от масштаба.

Таким образом, можно сказать, что фракталы как модели применяются в том
случае, когда реальный объект нельзя представить в виде классических
моделей. А это значит, что мы имеем дело с нелинейными связями и
недетерминированной природой данных. Нелинейность в мировоззренческом
смысле означает многовариантность путей развития, наличие выбора из
альтернатив путей и определенного темпа эволюции, а также необратимость
эволюционных процессов. Нелинейность в математическом смысле означает,
определенный вид математических уравнений (нелинейные дифференциальные
уравнения), содержащих искомые величины в степенях, больше единицы или
коэффициенты, зависящие от свойств среды. То есть, когда мы применяем
классические модели (например, трендовые, регрессионные и т. д.), мы
говорим, что будущее объекта однозначно детерминированное. И мы можем
предсказать его, зная прошлое объекта(исходные данные для
моделирования). А фракталы применяются в том случае, когда объект имеет
несколько вариантов развития и состояние системы определяется
положением, в котором она находится на данный момент. То есть мы
пытаемся смоделировать хаотичное развитие.

Что же нам дает применение фракталов?

Они позволяют намного упростить сложные процессы и объекты, что очень
важно для моделирования. Позволяют описать нестабильные системы и
процессы и, самое главное, предсказать будущее таких объектов.

ТЕОРИЯ ФРАКТАЛОВ

ПРЕДПОСЫЛКИ ВОЗНИКНОВЕНИЯ

Теория фракталов имеет совсем небольшой возраст. Она появилась в
конце шестидесятых годов на стыке математики, информатики, лингвистики
и биологии. В то время компьютеры все больше проникали в жизнь
людей, ученые начинали применять их в своих исследованиях, росло число
пользователей вычислительных машин. Для массового использования
компьютеров необходимо стало облегчить процесс общения человека с
машиной. Если в самом начале компьютерной эры немногочисленные
программисты-пользователи самоотверженно вводили команды в машинных
кодах и получали результаты в виде бесконечных лент бумаги, то при
массовом и загруженном режиме использования компьютеров возникла
необходимость в изобретении такого языка программирования, который был
бы понятен для машины, и в то же время, был бы прост в изучении и
применении. То есть пользователю требовалось бы ввести только одну
команду, а компьютер разложил бы ее на более простые, и выполнил
бы уже их. Чтобы облегчить написание трансляторов, на стыке информатики
и лингвистики возникла теория фракталов, позволяющая строго задавать
взаимоотношения между алгоритмическими языками. А датский математик и
биолог А. Линденмеер придумал в 1968 году одну такую грамматику,
названную им L-системой, которая, как он полагал, моделирует также рост
живых организмов, в особенности образование кустов и веток у растений.

Вот как выглядит его модель. Задают алфавит - произвольный набор
символов. Выделяют одно, начальное слово, называемое аксиомой, - можно
считать, что оно соответствует исходному состоянию организма – зародышу.
А потом описывают правила замены каждого символа алфавита определенным
набором символов, то есть задают закон развития зародыша. Действуют
правила так: прочитываем по порядку каждый символ аксиомы и заменяем
его на слово, указанное в правиле замены.

Таким образом, прочитав аксиому один раз, мы получаем новую строку
символов, к которой снова применяем ту же процедуру. Шаг за шагом
возникает все более длинная строка – каждый из таких шагов можно
считать одной из последовательных стадий развития «организма».
Ограничив число шагов, определяют, когда развития считается законченным.

ВОЗНИКНОВЕНИЕ ТЕОРИИ ФРАКТАЛОВ

Отцом фракталов по праву можно считать Бенуа Мандельброта.
Мандельброт является изобретателем термина «фрактал». Мандельброт
писал: « Я придумал слово «фрактал», взяв за основу латинское
прилагательное «fractus», означающее нерегулярный, рекурсивный,
фрагментный». Первое определение фракталам также дал Б. Мандельброт:

Фрактал – самоподобная структура, чье изображение не зависит от
масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем
развитии развитие всей модели в целом.

На сегодняшний день существует много различных математических моделей
фракталов. Отличительная особенность каждой из них является то, что в
их основе лежит какая-либо рекурсивная функция, например: xi=f(xi-1).
С применением ЭВМ у исследователей появилась возможность получать
графические изображения фракталов. Простейшие модели не требуют больших
вычислений и их можно реализовать прямо на уроке информатики, тогда как
иные модели настолько требовательны к мощности компьютера, что их
реализация осуществляется с применением суперЭВМ. Кстати, в США
изучением фрактальных моделей занимается Национальных Центр Приложений
для Суперкомпьютеров (NCSA). В данной работе мы хотим показать только
несколько моделей фракталов, которые нам удалось получить.

Модель Мандельброта.

Бенуа Мандельброт предложил модель фрактала, которая уже стала
классической и часто используется для демонстрации как типичного
примера самого фрактала, так и для демонстрации красоты фракталов,
которая также привлекает исследователей, художников, просто
интересующихся людей.

Математическое описание модели следующее: на комплексной плоскости в
неком интервале для каждой точки с вычисляется рекурсивная функция
Z=Z2+c. Казалось бы, что такого особенного в этой функции? Но после N
повторений данной процедуры вычисления координат точек, на
комплексной плоскости появляется удивительно красивая фигура, чем-то
напоминающая грушу.

В модели Мандельброта изменяющимся фактором является начальная точка
с, а параметр z, является зависимым. Поэтому для построения фрактала
Мандельброта существует правило: начальное значение z равно нулю (z=0)!
Это ограничение вводится для того, чтобы первая производная от функции
z в начальной точке была равна нулю. А это означает, что в начальной
точке функция имеет минимум, и в дальнейшем она будет принимать только
большие значения.

Мы хотим заметить, что если рекурсивная формула фрактала имеет другой
вид, то тогда следует выбирать другое значение начальной точки для
параметра Z. Например, если формула имеет вид z=z2+z+c, то начальная
точка будет равна:

2*z+1=0 ???z= -1/2.

В данной работе мы имеем возможность привести изображения фракталов,
которые были построены в NCSA. Мы получили файлы с изображениями через
сеть Internet.

Рис.1 Фрактал Мандельброта

Вам уже известна математическая модель фрактала Мандельброта. Теперь мы
покажем, как она реализуется графически. Начальная точка модели
равна нулю. Графически она соответствует центру тела “груши”. Через N
шагов заполнятся все тело груши и в том месте, где закончилась
последняя итерация, начинает образовываться «голова» фрактала.
«Голова» фрактала будет ровно в четыре раза меньше тела, так как
математическая формула фрактала представляет из себя квадратный
полином. Затем опять через N итераций у «тела» начинает образовываться
«почка» (справа и слева от «тела»). И так далее. Чем больше задано
числе итераций N, тем более детальным получится изображение фрактала,
тем больше будет у него различных отростков. Схематическое изображение
стадий роста фрактала Мандельброта представлено на рис.2:

Рис.2 Схема образования фрактала Мандельброта

Из рисунков 1 и 2 видно, что каждое последующее образование на «теле»
точно повторяет в своем строении само тело. Это и есть отличительная
черта того, что данная модель является фракталом.

На следующих рисунках показано, как будет изменяться положение точки,
соответствующей параметру z, при различном начальном положении точки
c.

А) Начальная точка в «теле» Б) Начальная
точка в «голове»

В) Начальная точка в «почке» Г) Начальная точка в
«почке» второго уровня

Д) Начальная точка в «почке» третьего уровня

Из рисунков А - Д хорошо видно, как с каждым шагом все более
усложняется структура фрактала и у параметра z все более сложная
траектория.

Ограничения на модель Мандельброта: существует доказательство, что в
модели Мандельброта |z|

Модель Джулии (Julia set)

Модель фрактала Джулии имеет то же уравнение, что и модель
Мандельброта: Z=Z2+c, только здесь переменным параметром является
не c, a z.

Соответственно, меняется вся структура фрактала, так как теперь на
начальное положение не накладывается никаких ограничений. Между
моделями Мандельброта и Джулии существует такое различие: если модель
Мандельброта является статической (так как z начальное всегда равно
нулю), то модель Джулии является динамической моделью фрактала. На
рис. 4 показано графическое представление фрактала Джулии.

Рис. 4 Модель Джулии

Как видно из рисунка фрактала, он симметричную относительно центральной
точки форму, тогда как фрактал Мандельброта имеет форму, симметричную
относительно оси.

Ковер Серпинского

Ковер Серпинского считается еще одной моделью фрактала. Строится он
следующим образом: берется квадрат, делится на девять квадратов,
вырезается центральный квадрат. Затем с каждым из восьми оставшихся
квадратов проделывается подобная процедура. И так до бесконечности. В
результате вместо целого квадрата мы получаем ковер со своеобразным
симметричным рисунком. Впервые данную модель предложил математик
Серпинский, в честь которого он и получил свое название. Пример ковра
Серпинского можно увидеть на рис. 4d.

Рис.4 Построение ковра Серпинского

4. Кривая Коха

В начале ХХ века математики искали такие кривые, которые ни в одной
точке не имеют касательной. Это означало, что кривая резко меняет свое
направление, и притом с колоссально большой скоростью (производная
равна бесконечности). Поиски данных кривых были вызваны не просто
праздным интересом математиков. Дело в том, что в начале ХХ века очень
бурно развивалась квантовая механика. Исследователь М.Броун
зарисовал траекторию движения взвешенных частиц в воде и объяснил это
явление так: беспорядочно движущиеся атомы жидкости ударяются о
взвешенные частицы и тем самым приводят их в движение. После такого
объяснения броуновского движения перед учеными встала задача найти такую
кривую, которая бы наилучшим образом аппроксимировала движение
броуновских частиц. Для этого кривая должна была отвечать следующим
свойствам: не иметь касательной ни в одной точке. Математик Кох
предложил одну такую кривую. Мы не будем вдаваться в объяснения
правила ее построения, а просто приведем ее изображение, из которого все
станет ясно (рис.5).

Рис.5 Этапы построения кривой Коха

Кривая Коха является еще одним примером фрактала, так как каждая ее
часть является уменьшенным изображением всей кривой.

6. Графические изображения различных фракталов

В данном пункте мы решили поместить графические изображения различных
фракталов, которые мы получили из сети Internet. К сожалению, мы не
смогли найти математическое описание этих фракталов, но для того,
чтобы понять их красоту, достаточно только рисунков.

Рис. 6 Примеры графического представления фракталов

II РАЗДЕЛ

ПРИМЕНЕНИЕ ТЕОРИИ ФРАКТАЛОВ В ЭКОНОМИКЕ

ТЕХНИЧЕСКИЙ АНАЛИЗ ФИНАНСОВЫХ РЫНКОВ

Финансовый рынок в развитых странах мира существует уже не одну сотню
лет. На протяжении веков люди продавали и покупали ценные бумаги.
Данный вид сделок с ценными бумагами приносил участникам рынка доход
из-за того, что цены на акции и облигации все время варьировали,
постоянно менялись. В течение веков люди покупали ценные бумаги по
одной цене и продавали, когда они становились дороже. Но иногда
ожидания покупателя не сбывались и цены на купленные бумаги начинали
падать, таким образом, он не только не получал доход, а еще и терпел
убытки. Очень долгое время никто не задумывался, почему так происходит:
цена то растет, то падает. Люди просто видели результат действия и не
задумывались о причинно-следственном механизме, его порождающем.

Так происходило до тех пор, пока американский финансист, один из
издателей известной газеты «Financial Times”, Чарльз Доу не
опубликовал ряд статей, в которых он излагал свои взгляды на
функционирование финансового рынка. Доу заметил, что цены на акции
подвержены циклическим колебаниям: после продолжительного роста следует
продолжительное падение, потом опять рост и падение. Таким образом,
Чарльз Доу впервые заметил, что можно прогнозировать дальнейшее
поведение цены на акции, если известно ее направление за какой-то
последний период.

Рис.1 Поведение цены по Ч.Доу

Впоследствии на основе сделанных Ч.Доу открытий была разработана целая
теория технического анализа финансового рынка, которая получила
название Теория Доу. Эта теория ведет свое начало с девяностых годов
девятнадцатого века, когда Ч.Доу опубликовал свои статьи.

Технический анализ рынков - это методы прогнозирования дальнейшего
поведения тренда цены, основанные на знании предыстории его поведения.
Технический анализ для прогнозирования использует математические
свойства трендов, а не экономические показатели ценных бумаг.

В середине века двадцатого, когда весь научный мир увлекался только
что появившейся теорией фракталов, другой известный американский
финансист Ральф Эллиот предложил свою теорию поведения цен на акции,
которая была основана на использовании теории фракталов.

Эллиот исходил из того, что геометрия фракталов имеет место быть не
только в живой природе, но и в общественных процессах. К общественным
процессам он относил и торговлю акциями на бирже.

ВОЛНОВАЯ ТЕОРИЯ ЭЛЛИОТА

Волновая Теория Эллиота – одна из старейших теорий технического
анализа. Со времени ее создания никто из пользователей не вносил в нее
каких-либо заметных новшеств. Наоборот, все усилия были направлены на
то, чтобы принципы сформулированные Эллиотом, вырисовывались более и
более четко. Результат – налицо. С помощью теории Эллиота были сделаны
самые лучшие прогнозы движения американского индекса Доу-Джонса.

Основой теории служит так называемая волновая диаграмма. Волна – это
различимое ценовое движение. Следуя правилам развития массового
психологического поведения, все движения цен разбиваются на пять волн в
направлении более сильного тренда, и на три волны – в обратном
направлении. Например, в случае доминирующего тренда мы увидим пять
волн при движении цены вверх и три – при движении (коррекции) вниз.

Для обозначения пятиволнового тренда используют цифры а для
противоположного трехволнового – буквы. Каждое из пятиволновых движений
называют импульсным, а каждое из трехвоновых - коррективным. Поэтому
каждая из волн 1,3,5,А и С является импульсной, а 2,4,и В -
коррективной.

Рис. 7 Волновая диаграмма Эллиота

Эллиот был одним из первых, кто четко определил действие Геометрии
Фракталов в природе, в данном случае - в ценовом графике. Он
предположил, что в каждая из только что показанных импульсных и
коррективных волн также представляет собой волновую диаграмму Эллиота.
В свою очередь, те волны тоже можно разложить на составляющие и так
далее. Таким образом Эллиот применил теорию фракталов для разложения
тренда на более мелкие и понятные части. Знание этих частей в более
мелком масштабе, чем самая большая волновая диаграмма, важно потому,
что трейдеры (участники финансового рынка), зная, в какой части
диаграммы они находятся, могут уверенно продавать ценные бумаги, когда
начинается коррективная волна, и должны покупать их, когда начинается
импульсная волна.

Рис.8 Фрактальная структура диаграммы Эллиота

ЧИСЛА ФИБОНАЧЧИ И ХАРАКТЕРИСТИКИ ВОЛН

Ральф Эллиот первым подал идею использовать числовую последовательность
Фибоначчи для составления прогнозов в рамках технического анализа. С
помощью чисел и коэффициентов Фибоначчи можно прогнозировать длину
каждой волны и время ее завершения. Не затрагивая вопроса времени,
обратимся к наиболее часто применяемым правилам определения длины
Эллиотовских волн. Под длиной в данном случае имеется в виду ее
повышение или понижение по шкале цен.

Импульсные волны.

Волна 3 обычно имеет длину, составляющую 1,618 волны 1, реже – равную
ей.

Две из импульсных волн часто бывают равны по длине, обычно это волны 5
и 1. Обычно это происходит, если длина волны 3 меньше, чем 1,618
длины волны 1.

Часто встречается соотношение, при котором длина волны 5 равна 0,382
или 0,618 расстояния, пройденного ценой от начала волны 1 до конце
волны 3.

Коррекции

Длины корректирующих волн составляют определенный коэффициент
Фибоначчи от длины предшествующей импульсной волны. В соответствии с
правилом чередования волны 2 и 4 должны чередоваться в процентном
соотношении. Наиболее распространенным примером является следующий:
волна 2 составила 61,8% волны 1, при этом волна 4 может составлять
только 38,2% или 50% от волны 3.

ЗАКЛЮЧЕНИЕ

В нашей работе приведены далеко не все области человеческих знаний,
где нашла свое применение теория фракталов. Хотим только сказать, что
со времени возникновения теории прошло не более трети века, но за это
время фракталы для многих исследователей стали внезапным ярким светом
в ночи, которые озарил неведомые доселе факты и закономерности в
конкретных областях данных. С помощью теории фракталов стали объяснять
эволюцию галактик и развитие клетки, возникновение гор и образование
облаков, движение цен на бирже и развитие общества и семьи. Может
быть, в первое время данное увлечение фракталами было даже слишком
бурным и попытки все объяснять с помощью теории фракталов были
неоправданными. Но, без сомнения, данная теория имеет право на
существование, и мы сожалеем, что в последнее время она как-то забылась
и осталась уделом избранным. При подготовке данной работы нам было
очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что
очень часто возникает такое ощущение, что теоретические знания стоят в
стороне от жизненной реальности.

В завершение нашей работы, мы хотим привести восторженные слова
крестного отца теории фракталов Бенуа Мандельброта: «Геометрия природы
фрактальна!». В наше время это звучит также дерзко и абсурдно, как
знаменитое восклицание Г. Галилея: «А все-таки она вертится!» в XVI
веке.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Шейпак И.А. Фракталы, графталы, кусты… //Химия и жизнь. 1996 №6

Постижение хаоса //Химия и жизнь. 1992 №8

Эрлих А. Технический анализ товарных и фондовых рынков, М: Инфра-М, 1996

Материалы из сети Internet.

Последовательность Фибоначчи – последовательность, предложенная в 1202
г. средневековым математиком Леонардо Фибоначчи. Относится к виду
возвратных последовательностей. a1=1, а2=1, аi=ai-1+ai-2.
Коэффициенты Фибоначчи – частное от деления двух соседних членов
последовательности Фибоначчи: K1=ai/ai-1=1.618,

K2=ai-1/ai=0.618. Эти коэффициенты представляют собой так называемое
“золотое сечение”.

Цена акции

График поведения цены акции


Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации .

2.1 Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триадной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триадную кривую Кох . Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1 . В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3 . Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n -го поколения при любом конечном n называется предфракталом . На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным обьектом .


Рис 2. Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рис.2 представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Предельная фрактальная кривая (при n стремящемся к бесконечности) называется драконом Хартера-Хейтуэя .

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности обьекта) .

2.2 Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n -мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоватся терминологией теории этих систем: фазовый портрет , установившийся процесс , аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несолькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z = Z [i] * Z [i] + C ,

где Z i и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z [i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z [i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z [i] оставалась внутри окружности, можно установить цвет точки C (если Z [i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

2.3 Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря .

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).


Наткнулся тут на упоминание "Теории фракталов" в сериале "Иеремия" и заинтресовался этой довольно изящной теорией, которые современные метафизики применяют для доказательства существования Бога. Теория фракталов имеет совсем небольшой возраст. Она появилась в конце шестидесятых годов на стыке математики, информатики, лингвистики и биологии. В то время компьютеры все больше проникали в жизнь людей, ученые начинали применять их в своих исследованиях, росло число пользователей вычислительных машин. Для массового использования компьютеров необходимо стало облегчить процесс общения человека с машиной. Если в самом начале компьютерной эры немногочисленные программисты-пользователи самоотверженно вводили команды в машинных кодах и получали результаты в виде бесконечных лент бумаги, то при массовом и загруженном режиме использования компьютеров возникла необходимость в изобретении такого языка программирования, который был бы понятен для машины, и в то же время, был бы прост в изучении и применении. То есть пользователю требовалось бы ввести только одну команду, а компьютер разложил бы ее на более простые, и выполнил бы уже их. Чтобы облегчить написание трансляторов, на стыке информатики и лингвистики возникла теория фракталов, позволяющая строго задавать взаимоотношения между алгоритмическими языками. А датский математик и биолог А. Линденмеер придумал в 1968 году одну такую грамматику, названную им L-системой, которая, как он полагал, моделирует также рост живых организмов, в особенности образование кустов и веток у растений.

Фрактал (лат. fractus — дробленый, сломанный, разбитый) — сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, строго большую топологической. Фрактальная форма подвида цветной капусты (Brassica cauliflora). Фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Отцом фракталов по праву можно считать Бенуа Мандельброта. Мандельброт является изобретателем термина «фрактал». Мандельброт
писал: « Я придумал слово «фрактал», взяв за основу латинское прилагательное «fractus», означающее нерегулярный, рекурсивный,
фрагментный». Первое определение фракталам также дал Б. Мандельброт. На рисунке как раз классическая модель фрактала - Множество Мандельброта.

Если излагать примтивно, то теория фрактала - это сопособность хаотичгных стукртур самоорагнизовываться в систему. Аттра́ктор (англ. attract — привлекать, притягивать) — множество состояний (точнее — точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор — это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник — пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Большинство типов движения описывается простыми аттракторами, являющиеся ограниченными циклами. Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров. Например, простая трехмерная система погоды описывается известным аттрактором Лоренца (Lorenz)- одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных. Другим таким аттрактором является — отображение Рёслера (Rössler), котороя имеет двойной период, подобно логистическому отображению. Странные аттракторы появляются в обеих системах, и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например отображения Хенона (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру. Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.

Так вот, свойство хаотических систем самоорганизовываться с помощью неправильных аттракторов, по мнению некоторых математиков, и явялется недоказуемым доказательством существования Бога и Его энергии творения всего сущего. Загадка!

Всем здравствуйте! Меня зовут,Рибенек Валерия, г.Ульяновск и сегодня я выложу несколько своих научных статей на сайте ЛКИ.

Первая моя научная статья в этом блоге будет посвящена фракталам . Скажу сразу, что мои статьи рассчитаны почти на любую аудиторию. Т.е. они, надеюсь, будут интересны, как школьникам, так и студентам.

Недавно я узнала о таких интереснейших объектах математического мира как фракталы. Но существуют они не только в математике. Они окружают нас повсюду. Фракталы бывают природные. О том, что такое фракталы, о видах фракталов, о примерах этих объектов и их применении я и расскажу в этой статье. Для начала кратко расскажу, что такое фрактал.

Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Для примера я вставлю картинку с изображением четырех разных фракталов.

Расскажу немного об истории фракталов. Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово «фрактал» было введено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта The Fractal Geometry of Nature. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Примеров фракталов можно привести массу, потому что, как и говорила, они окружают нас повсюду. По-моему, даже вся наша Вселенная — это один огромный фрактал. Ведь все в ней, от строения атома до строения самой Вселенной, в точности повторяет друг друга. Но есть, конечно, и более конкретные примеры фракталов из разных областей. Фракталы, к примеру, присутствуют в комплексной динамике. Там они естественным образом появляются при изучении нелинейных динамических систем . Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функцией комплекса переменных на плоскости. Одними из самых известных фракталов такого вида являются множество Жюлиа, множество Мандельброта и бассейны Ньютона. Ниже по порядку на картинки изображены каждый из вышеперечисленных фракталов.

Еще одним примером фракталов являются фрактальные кривые. Объяснить, как строиться фрактал лучше всего именно на примере фрактальных кривых. Одной из таких кривых является, так называемая, Снежинка Коха. Существует простая процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. Ниже показана Снежинка (или кривая) Коха.

Фрактальных кривых так же существует огромное множество. Самые известные из них — это, уже упомянутая, Снежинка Коха, а также кривая Леви, кривая Минковского, ломанная Дракона, кривая Пиано и дерево Пифагора. Изображение данных фракталов и их историю, я думаю, при желании вы легко сможете найти в Википедии.

Третьим примером или видом фракталов являются стохастические фракталы. К таким фракталам можно отнести траекторию броуновского движения на плоскости и в пространстве, эволюции Шрамма-Лёвнера, различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр.

Существуют так же чисто математические фракталы. Это, например, канторово множество, губка Менгера, Треугольник Серпинского и другие.

Но самые, пожалуй, интересные фракталы — это природные. Природные фракталы — это такие объекты в природе, которые обладают фрактальными свойствами. И тут уже список большой. Я не буду перечислять все, потому что, наверное, всех и не перечислить, но о некоторых расскажу. Вот, к примеру, в живой природе к таким фракталам относятся наша кровеносная система и легкие. А еще кроны и листья деревьев. Так же сюда можно отнести морских звезд, морских ежей, кораллы, морские раковины, некоторые растения, такие как капуста или брокколи. Ниже наглядно показаны несколько таких природных фракталов из живой природы.

Если же рассматривать неживую природу, то там интересных примеров гораздо больше, нежели в живой. Молнии, снежинки, облака, всем известные, узоры на окнах в морозные дни, кристаллики, горные хребты — все это является примерами природных фракталов из неживой природы.

Примеры и виды фракталы мы рассмотрели. Что же касается применения фракталов, то они применяются в самых разных областях знаний. В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать ее при вычислении протяженности береговой линии. Так же фракталы активно используются в радиотехнике, в информатике и компьютерных технологиях, телекоммуникациях и даже экономике. Ну и, конечно же, фрактальное видение, активно используется в современном искусстве и архитектуре. Вот один из примеров фрактальных картин:

И так, на этом я думаю завершить свой рассказ о таком необычном математическом явлении как фрактал. Сегодня мы узнали о том, что такое фрактал, как он появился, о видах и о примерах фракталов. А так же я рассказала о их применении и продемонстрировала некоторые из фракталов наглядно. Надеюсь, вам понравилась эта небольшая экскурсия в мир удивительных и завораживающих фрактальных объектов.



Понравилась статья? Поделиться с друзьями: