Фазовый переход осуществляется при постоянном. Фазовые переходы

Р, т-ре Т и др. параметрам, меняются скачком при непрерывном изменении этих параметров. При этом выделяется или поглощается теплота перехода. В однокомпонентной системе т-ра перехода T 1 связана с давлением р 1 Клапейрона - Клаузиуса уравнением dp 1 /dT 1 = = QIT 1 DV, где Q - теплота перехода, DV - скачок объема. Для фазовых переходов I рода характерны гистерезисные явления (напр., перегрев или переохлаждение одной из фаз), необходимые для образования зародышей другой фазы и протекания фазовых переходов с конечной скоростью. В отсутствие устойчивых зародышей перегретая (переохлажденная) фаза находится в состоянии метастабильного равновесия (см. Зарождение новой фазы). Одна и та же фаза может существовать (хотя и метастабильно) по обе стороны от точки перехода на диаграмме состояния (однако кристаллич. фазы нельзя перегреть выше т-ры плавления или сублимации). В точке фазовых переходов I рода энергия Гиббса G как ф-ция параметров состояния непрерывна (см. рис. в ст. Диаграмма состояния), а обе фазы могут сосуществовать сколь угодно долго, т. е. имеет место т. наз. фазовое расслоение (напр., сосуществование жидкости и ее пара или твердого тела и расплава при заданном полном объеме системы).

Ф азовые переходы I рода - широко распространенные в природе явления. К ним относятся испарение и конденсация из газовой в жидкую фазу, плавление и затвердевание, сублимация и конденсация (десублимация) из газовой в твердую фазу, большинство полиморфных превращений, нек-рые структурные переходы в твердых телах , напр, образование мартенсита в сплаве железо - углерод . В чистых сверхпроводниках достаточно сильное магн. поле вызывает фазовые переходы I рода из сверхпроводящего в нормальное состояние.

При фазовых переходах II рода сама величина G и первые производные G по T, р и др. параметрам состояниям меняются непрерывно, а вторые производные (соотв. теплоемкость , коэф. сжимаемости и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не выделяется и не поглощается, явления гистерезиса и метаста-бильные состояния отсутствуют. К фазовым переходам II рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупо-рядоченное (ферро- и ферримагнитное в Кюри точке , антиферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв. во всей решетке или в каждой из магн. подрешеток); переход диэлектрик - сегнетоэлектрик с появлением спонтанной поляризации ; возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах); переход смектич. жидких кристаллов в нематич. фазу, сопровождающийся аномальным ростом теплоемкости , а также переходы между разл. смектич. фазами; l -переход в 4 He, сопровождающийся возникновением аномально высокой теплопроводности и сверхтекучести (см. Гелий); переход металлов в сверхпроводящее состояние в отсутствие магн. поля.

Фазовые переходы могут быть связаны с изменением давления . Многие в-ва при малых давлениях кристаллизуются в неплотноупако-ванные структуры. Напр., структура графита представляет собой ряд далеко отстоящих друг от друга слоев атомов углерода . При достаточно высоких давлениях таким рыхлым структурам соответствуют большие значения энергии Гиббса , а меньшим значениям отвечают равновесные плотноупако-ванные фазы. Поэтому при больших давлениях графит переходит в алмаз . Квантовые жидкости 4 He и 3 He при нормальном давлении остаются жидкими вплоть до самых низких из достигнутых т-р вблизи абс. нуля. Причина этого - в слабом взаимод. атомов и большой амплитуде их "нулевых колебаний" (высокой вероятности квантового туннелирования из одного фиксированного положения в другое). Однако повышение давления приводит к затвердеванию жидкого гелия ; напр., 4 He при 2,5 МПа образует гексаген, плотноупакован-ную решетку.

Общая трактовка фазовых переходов II рода предложена Л. Д. Ландау в 1937. Выше точки перехода система, как правило, обладает более высокой симметрией , чем ниже точки перехода, поэтому фазовый переход II рода трактуется как точка изменения симметрии . Напр., в ферромагнетике выше точки Кюри направления спиновых магн. моментов частиц распределены хаотически, поэтому одновременное вращение всех спинов вокруг одной и той же оси на одинаковый угол не меняет физ. св-в системы. Ниже точки перехода спины имеют преимуществ. ориентацию, и совместный их поворот в указанном выше смысле изменяет направление магн. момента системы. В двухкомпо-нентном сплаве , атомы к-рого А и В расположены в узлах простой кубич. кристаллич. решетки, неупорядоченное состояние характеризуется хаотич. распределением А и В по узлам решетки, так что сдвиг решетки на один период не меняет св-в. Ниже точки перехода атомы сплава располагаются упорядочено: ...ABAB... Сдвиг такой решетки на период приводит к замене всех атомов А на В и наоборот. T. обр., симметрия решетки уменьшается, т. к. подрешетки, образуемые атомами А и В, становятся неэквивалентными.

Симметрия появляется и исчезает скачком; при этом нарушение симметрии можно охарактеризовать физ. величиной, к-рая при фазовых переходах II рода изменяется непрерывно и наз. параметром порядка. Для чистых жидкостей таким параметром является плотность, для р-ров - состав, для ферро- и ферримагнетиков - спонтанная намагниченность, для сегне-тоэлектриков - спонтанная электрич. поляризация , для сплавов - доля упорядочившихся атомов для смектич. жидких кристаллов - амплитуда волны плотности и т. п. Во всех перечисленных случаях при т-рах выше точки фазовых переходов II рода параметр порядка равен нулю, ниже этой точки начинается его аномальный рост, приводящий к макс. значению при T = O.

Отсутствие теплоты перехода, скачков плотности, и концентраций , характерное для фазовых переходов II рода, наблюдается и в критич. точке на кривых фазовых переходов I рода (см. Критические явления). Сходство оказывается очень глубоким. Состояние в-ва около критич. точки также можно охарактеризовать величиной, играющей роль параметра порядка. Напр., в случае равновесия жидкость - пар таким параметром служит отклонение плотности в-ва от критич. значения: при движении по критич. изохоре со стороны высоких т-р газ однороден и отклонение плотности от критич. значения равно нулю, а ниже критич. т-ры в-во расслаивается на две фазы, в каждой из к-рых отклонение плотности от критической не равно нулю.

Поскольку вблизи точки фазового перехода II рода фазы мало отличаются друг от друга, возможно существование флуктуации параметра порядка, точно так же, как вблизи критич. точки. С этим связаны критич. явления в точках фазовых переходов II рода: аномальный рост магн. восприимчивости ферромагнетиков и диэлектрич. восприимчивости сегнетоэлектриков (аналогом является рост сжимаемости вблизи критич. точки перехода жидкость - пар); резкий рост теплоемкости ; аномальное рассеяние световых волн в системе

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Смоленский государственный университет

По теме: «Фазовые переходы»

Выполнил: студент 1 курса

Дольников Александр

1. Понятие фазового перехода

2. Классификация фазовых переходов

3. Фазовые переходы первого рода

4. Агрегатные состояния веществ

4.1 Понятие газообразное вещество

4.2 Понятие жидкого вещества

4.3 Понятие твердого вещества

4.4 Понятие плазмы

5. Квантовый фазовый переход

6. Фазовые переходы второго рода

7. Равновесие фаз

Список литературы

1. Понятие Фазового перехода

Фазовый переход (фазовое превращение) в термодинамике -- переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы -- более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило, равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но и при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).

2. Классификация фазовых переходов

Фазовые переходы, при которых скачком изменяются первые производные термодинамических потенциалов по интенсивным параметрам системы (температуре или давлению). Переходы первого рода реализуются как при переходе системы из одного агрегатного состояния в другое, так и в пределах одного агрегатного состояния (в отличие от фазовых переходов второго рода, которые происходят в пределах одного агрегатного состояния)

Наиболее распространённые примеры фазовых переходов первого рода :

· плавление и кристаллизация

· испарение и конденсация

· сублимация и десублимация

Фазовые переходы, при которых вторые производные термодинамических потенциалов по давлению и температуре изменяются скачкообразно, тогда, как их первые производные изменяются постепенно. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д. Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка , равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.

Наиболее распространённые примеры фазовых переходов второго рода:

· прохождение системы через критическую точку

· переход парамагнетик-ферромагнетик или парамагнетик -антиферромагнетик (параметр порядка -- намагниченность)

· переход металлов и сплавов в состояние сверхпроводимости (параметр порядка -- плотность сверхпроводящего конденсата)

· переход жидкого гелия в сверхтекучее состояние (п. п. -- плотность сверхтекучей компоненты)

· переход аморфных материалов в стеклообразное состояние

Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.

В последнее время широкое распространение получило понятие квантовый фазовый переход, то есть фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.

3. Фазовые переходы первого рода

· Плавле м ние -- это процесс перехода тела из кристаллического твёрдого состояния в жидкое, то есть переход вещества из одного агрегатного состояния в другое. Плавление происходит с поглощением удельной теплотыплавления и является фазовым переходом первого рода, которое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения -- температура плавления.

Способность плавиться относится к физическим свойствам вещества

При нормальном давлении, наибольшей температурой плавления среди металлов обладает вольфрам (3422 °C), среди простых веществ -- углерод (по разным данным 3500 -- 4500 °C) а среди произвольных веществ -- карбид тантала-гафния Ta 4 HfC 5 (4216 °C). Можно считать, что самой низкой температурой плавления обладает гелий: при нормальном давлении он остаётся жидким при сколь угодно низких температурах.

Многие вещества при нормальном давлении не имеют жидкой фазы. При нагревании они путем сублимации сразу переходят в газообразное состояние.

· Кристаллизация -- процесс фазового перехода вещества из жидкого состояния в твёрдое кристаллическое с образованием кристаллов. Фазой называется однородная часть термодинамической системы отделённая от других частей системы (других фаз) поверхностью раздела, при переходе через которую химический состав, структура и свойства вещества изменяются скачками.

Кристаллизация -- это процесс выделения твёрдой фазы в виде кристаллов из растворов или расплавов, в химической промышленности процесс кристаллизации используется для получения веществ в чистом виде.

Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или пресыщения пара, когда практически мгновенно возникает множество мелких кристалликов -- центров кристаллизации . Кристаллики растут, присоединяя атомы или молекулы из жидкости или пара. Рост граней кристалла происходит послойно, края незавершённых атомных слоев (ступени) при росте движутся вдоль грани. Зависимость скорости роста от условий кристаллизации приводит к разнообразию форм роста и структуры кристаллов (многогранные, пластинчатые, игольчатые, скелетные, дендритные и другие формы, карандашные структуры и т. д.). В процессе кристаллизации неизбежно возникают различные дефекты.

На число центров кристаллизации и скорость роста значительно влияет степень переохлаждения.

Степень переохлаждения -- уровень охлаждения жидкого металла ниже температуры перехода его в кристаллическую (твердую) модификацию. С.п. необходима для компенсации энергии скрытой теплоты кристаллизации. Первичной кристаллизацией называется образование кристаллов в металлах (сплавах и жидкостях) при переходе из жидкого состояния в твердое.

· Испарение -- процесс фазового перехода вещества из жидкого состояния в парообразное или газообразное, происходящий на поверхности вещества. Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое). При испарении с поверхности жидкости или твёрдого тела вылетают (отрываются) частицы (молекулы, атомы), при этом их кинетическая энергия должна быть достаточна для совершения работы, необходимой для преодоления сил притяжения со стороны других молекул жидкости.

· Конденсация паров (лат. condense -- накопляю, уплотняю, сгущаю) -- переход вещества в жидкое или твёрдое состояние из газообразного (обратный последнему процессу называется сублимация ). Максимальная температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.

· Сублимация -- переход вещества из твёрдого состояния сразу в газообразное, минуя жидкое. Поскольку при возгонке изменяется удельный объём вещества и поглощается энергия (теплота сублимации ), возгонка является фазовым переходом первого рода.

Обратным процессом является десублимация. Примером десублимации являются такие атмосферные явления, как и ней на поверхности земли и изморозь на ветвях деревьев и проводах.

· Десублимация -- физический процесс перехода вещества из газообразного состояния в твёрдое, минуя жидкое. Примером десублимации является появление ледяных узоров на оконных стёклах в зимнее время и такие атмосферные явления, как и ней и изморозь.

При десублимации высвобождается энергия. Десублимация является экзотермическим фазовым переходом.

Обратным процессом является возгонка (сублимация).

4. Агрегатные состояния веществ

4.1 Понятие газообразного вещества

Испарение - это парообразование, происходящее с поверхности жидкости. Разные молекулы жидкости при одной и той же температуре движутся с разными скоростями. Если достаточно «быстрая» молекула окажется у поверхности жидкости, то она может преодолеть притяжение соседних молекул и вылететь из жидкости. Вылетевшие с поверхности жидкости молекулы образуют пар. Одновременно с испарением происходит перенос молекул из пара в жидкость. Явление превращения пара в жидкость называется конденсацией. Если нет притока энергии к жидкости извне, то испаряющаяся жидкость охлаждается. Конденсация пара сопровождается выделением энергии. Скорость испарения жидкости зависит от рода жидкости и от ее температуры, от площади ее поверхности, от движения воздушных масс (ветра) над поверхностью жидкости. Кипение - это испарение изнутри и с поверхности жидкости. При нагревании жидкости пузырьки воздуха (он растворен в ней) внутри нее постепенно растут. Архимедова сила, действующая на пузырьки, увеличивается, они всплывают и лопаются. Эти пузырьки содержат не только воздух, но и водяной пар, так как жидкость испаряется внутрь этих пузырьков. Температура кипения - это температура, при которой жидкость кипит. В процессе кипения при t o = соnst к жидкости следует подводить энергию путем теплообмена, т.е. подводить теплоту парообразования

Теплота парообразования пропорциональна массе вещества, превратившегося в пар. Величина - удельная теплота парообразования. Она показывает, какое количество теплоты необходимо для превращения 1 кг жидкости в пар при постоянной температуре. Она измеряется в Дж/кг, кДж/кг. Наибольшая часть теплоты парообразования расходуется на разрыв связей между частицами, некоторая ее часть идет на работу, совершаемую при расширении пара. С ростом давления температура кипения жидкости повышается, а удельная теплота парообразования уменьшается.

Чем легче газ, т.е. чем меньше атомный вес вещества, тем она больше.

Молекулы жидкости, участвуя в тепловом движении, непрерывно сталкиваются между собой. Это приводит к тому, что некоторые из них приобретают кинетическую энергию, достаточную для преодоления молекулярного притяжения. Такие молекулы, находясь у поверхности жидкости, вылетают из неё, образуя над жидкостью пар (газ). Молекулы пар, двигаясь хаотически, ударяются о поверхность жидкости. При этом часть из них может перейти в жидкость. Эти два процесса вылета молекул жидкости и их обратное возвращение в жидкость происходят одновременно. Если число вылетающих молекул больше числа возвращающихся, то происходит уменьшение массы жидкости, т.е. жидкость испаряется, если же наоборот, то количество жидкости увеличивается, т.е. наблюдается конденсация пара. Возможен случай, когда массы жидкости и пара, находящегося над ней, не меняются. Это возможно, когда число молекул, покидающих жидкость, равно числу молекул, возвращающихся в неё. Такое состояние называется динамическим равновесием, а пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным. Если же между паром и жидкостью нет динамического равновесия, то он называется ненасыщенным. Очевидно, что насыщенный пар при данной температуре имеет определённую плотность, называемую равновесной.

Количество теплоты, которое необходимо сообщить единице массы жидкости, для превращения её в пар при неизменной температуре называется удельной теплотой парообразования. Удельная теплота парообразования зависит от температуры жидкости, уменьшаясь с её повышением. При конденсации количество теплоты, затраченное на испарение жидкости, выделяется. Конденсация - процесс превращения из газообразного состояния в жидкое.

Неравномерное распределение кинетической энергии теплового движения приводит к тому. Что при любой температуре кинетическая энергия некоторой части молекул может превысить потенциальную энергию связи с остальными. Испарением называется процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы. Испарение сопровождается охлаждением, т.к. более быстрые молекулы покидают жидкость. Испарение жидкости в закрытом сосуда при неизменной температуре приводит к увеличению концентрации молекул в газообразном состоянии. Через некоторое время наступает равновесие между количеством испаряющихся молекул и возвращающихся в жидкость.

Газообразное вещество, находящееся в динамическом равновесии со своей жидкостью, называется насыщенным паром. Пар, находящийся при давлении ниже давления насыщенного пара, называется ненасыщенным. Давление насыщенного пара не зависит при постоянной температуре от объема. При постоянной концентрации молекул давление насыщенного пара растет быстрее, чем давление идеального газа, т.к. под действием температуры количество молекул увеличивается. Отношение давления водяного пара при данной температуре к давлению насыщенного пара при той же температуре, выраженное в процентах, называется относительной влажностью воздуха. Чем ниже температура, тем меньше давление насыщенного пара, таким образом при охлаждении до некоторой температуры пар становится насыщенным. Эта температура называется точкой росы t p.

4.2 Понятие жидкого вещества

Молекулы в жидкости расположены достаточно близко друг к другу, так что при попытке сжатия жидкости возникают большие силы отталкивания. Отсюда малая сжимаемость жидкостей. Молекулы ведут оседлую жизнь, в среднем она равна 10 -11 с. Жидкости текучи, т.е. не сохраняют свою форму

Пусть жидкость занимает часть объема замкнутого сосуда. При любой температуре существует некоторое количество достаточно энергичных молекул внутри жидкости, которые способны разорвать связи с соседними молекулами и вылететь из жидкости. Чем больше температура и при наличии ветра тем быстрее происходит испарение. В то же время в паре, занимающем остальной объем внутри сосуда, всегда найдутся молекулы, которые влетают обратно в жидкость и не могут вылететь обратно. Таким образом, в этом сосуде все время происходят два конкурирующих процесса - испарение и обратная конденсация. Когда число молекул, покидающих жидкость, становится равным числу молекул, возвращающихся обратно, то наступает динамическое равновесие между жидкой и газообразной фазой, говорят, что пар достиг насыщения.

По мере увеличения температуры жидкости интенсивность испарения увеличивается, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар.

В жидкости всегда присутствуют растворенные газы, которые выделяются на дне и стенках сосуда, а также на взвешенных в жидкости пылинках. Пары жидкости, которые находятся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает, и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Перед закипанием чайник почти перестает шуметь.

Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давления насыщенного пара внутри его немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости. Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения, и наоборот, уменьшая внешнее давление - понижается температура кипения.

У каждой жидкости своя температура кипения, которая зависит от давления насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения соответствующей жидкости, т.к. при меньших температурах давление насыщенного пара становится равным атмосферному.

Критическая температура - это температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром. Представление о критической температуре ввел Д. И. Менделеев. При критической температуре плотность и давление насыщенного пара становятся максимальными, а плотность жидкости, находящейся в равновесии с паром, - минимальной. Особое значение критической температуры состоит в том, что при температуре выше критической ни при каких давлениях газ нельзя обратить в жидкость. Газ, имеющий температуру ниже критической, представляет собой ненасыщенный пар.

4.3 Понятие твердого вещества

В твердом теле атомы или молекулы могут лишь колебаться вокруг определенных положений равновесия. Поэтому твердые тела сохраняют и форму, и объем. У кристаллических твердых тел центры атомов (молекул) образуют пространственную решетку, в узлах которой находятся атомы вещества. Аморфные твердые тела не обладают жесткой структурой и скорее напоминают застывшие жидкости.

Переход вещества из твердого состояния в жидкое называется плавлением. Обратный процесс называется отвердеванием. Температура, при которой вещество плавится (отвердевает), называется температурой плавления (отвердевания) вещества. Температура плавления и отвердевания для данного вещества при одинаковых условиях одинакова. При плавлении (отвердевании) температура вещества не меняется. Однако это не значит, что в процессе плавления к телу не надо подводить энергию. Опыт показывает, что если подача энергии путем теплообмена прекращается, то прекращается и процесс плавления. При плавлении подводимая к телу теплота идет на уменьшение связей между частицами вещества, т.е. на разрушение кристаллической решетки. При этом возрастает энергия взаимодействия между частицами. Небольшая же часть теплоты при плавлении расходуется на совершение работы по изменению объема тела, так как у большинства веществ при плавлении объем возрастает. В процессе плавления к телу подводится некоторое количество теплоты, которая называется теплотой плавления. Теплота плавления пропорциональна массе расплавившегося вещества. Величина (ламбда) называется удельной теплотой плавления вещества. Удельная теплота плавления показывает, какое количество теплоты необходимо, чтобы расплавить единицу массы данного вещества при температуре плавления. Она измеряется в Дж/кг, кДж/кг.

4.4 Понятие плазмы

Термин «плазма» предложили использовать американскими физиками Ленгмюром и Тонксом в 1923 году. Плазма - нормальная форма существования вещества при температуре порядка 10 000 градусов и выше, она представляет собой газ, в котором значительная часть атомов или молекул ионизиована. Удивительно, но плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99% массы Вселенной. Солнце и звёзды, как уже было сказано выше, представляют собой не что иное, как сгустки высокотемпературной плазмы, верхний слой атмосферной оболочки Земли, так называемая, ионосфера, также образован из плазмы, ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе и шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности. Плюс к этому, плазма обладает очень интересными свойствами, которые находят всё более широкое применение в разработках, посвящённых большим проблемам современной техники. Рассмотрим замкнутый сосуд, сделанный из очень тугоплавкого материала, в котором находиться небольшое количество некоторого вещества. Постепенно повышая его температуру, будем подогревать сосуд вместе с содержащимся в нем веществом. Пусть первоначально вещество, содержащееся в сосуде, было в твёрдом состоянии. В некоторый момент времени это вещество начнёт плавиться, а при ещё более высокой температуре - испаряться. Образовавшийся газ станет равномерно заполнять весь объём. При достижении достаточно высокого уровня температуры, все молекулы газа, если это молекулярный газ, диссоциируют - распадутся на отдельные атомы. В результате в сосуде останется уже газообразная смесь элементов, из которых состоит вещество. Испытывая время от времени столкновения между собой, атомы этого вещества будут быстро беспорядочно двигаться.

5. Квантовый фазовый переход

Квантовый фазовый переход (квантовое фазовое превращение) -- переход вещества из одной квантовой термодинамической фазы в другую при изменении внешних условий, происходящий, однако, при отсутствии тепловых флуктуаций, то есть при. Таким образом, система перестраивается под действием каких-либо нетепловых параметров (например, давление или магнитное поле).

Классический фазовый переход описывается разрывом термодинамических функций данной системы. Подобный разрыв свидетельствует о том, что частицы системы перестраиваются. Типичным примером подобного поведения является переход воды из жидкого состояния в твёрдое (лёд). За процессы, происходящие при классических фазовых переходах, ответственны два конкурирующих параметра: энергия системы и энтропия её термических флуктуаций. Энтропия классической системы при нулевой температуре отсутствует, поэтому фазовый переход произойти не может. фазовый переход квантовый агрегатный

Однако в квантово-механической системе происходят квантовые флуктуации, которые и ответственны за фазовый переход. Таким образом, квантовые флуктуации могут переводить систему в другую фазу. Контролируют эти квантовые флуктуации нетепловые параметры, такие как давление, концентрация.

Системой, испытывающий квантовый фазовый переход первого рода, является гелий. При атмосферном давлении он не переходит в твёрдую фазу даже при абсолютном нуле. Однако, при давлениях выше 25 атмосфер гелий кристаллизуется в гексагональную упаковку.

Наиболее ярким представителем материалов, в которых происходит квантовый фазовый переход второго рода, является геликоидальный ферромагнетик MnSi. Данный материал при нормальном давлении имеет критическую температуру перехода из парамагнитного состояния в слабое ферромагнитное состояние 29 K. Однако при приложении внешнего гидростатического давления порядка 14,6 кбар, в результате чего возникает квантовый фазовый переход.

6. Фазовые переходы второго рода

Изменение симметрии

Фазовые переходы второго рода сопровождаются изменением симметрии вещества. Изменение симметрии может быть связано со смещением атомов определённого типа в кристаллической решётке, либо с изменением упорядоченности вещества.

В большинстве случаев, фаза, обладающая большей симметрией (т. е. включающей в себя все симметрии другой фазы), соответствует более высоким температурам, но существуют и исключения. Например, при переходе через нижнюю точку Кюри в сегнетовой соли, фаза, соответствующая меньшей температуре, обладает ромбической симметрией, в то время как фаза, соответствующая большей температуре, обладает моноклинной симметрией.

Для количественной характеристики симметрии при фазовом переходе второго рода вводится параметр порядка, принимающий отличные от нуля значения в фазе с большей симметрией, и тождественно равный нулю в неупорядоченной фазе.

Теоретическое описание фазовых переходов второго рода

Теория Ландау

Теория среднего поля - самый первый и простейший способ теоретического описания критических явлений. Для этого производится линеаризация много частичного гамильтониана взаимодействия, то есть фактически, он заменяется на одно частичный гамильтониан с некоторым эффективным самосогласованным полем. Таким образом, мы переходим от близкодействия к дальнодействию, то есть к взаимодействию с формально бесконечным радиусом. Также мы пренебрегаем корреляционными эффектами.

Применение теории среднего поля для описания фазовых переходов фактически эквивалентно применению теории Ландау, то есть разложению функционала свободной энергии по степеням параметра порядка около критической точки.

При описании фазовых переходов, эффективное поле обычно принимается пропорциональным параметру порядка. Как правило, множителем пропорциональности является средняя энергия взаимодействия частиц системы. Так, в магнетике рассматривается действие на отдельный электронный спин локального магнитного поля, создаваемое соседними спинами.

Критические показатели для магнетика в теории Ландау:

Для других систем - антиферромагнетика, бинарного сплава и системы жидкость-пар теория среднего поля даёт те же критические показатели.

Критические показатели, полученные в теории среднего, поля плохо согласуются с экспериментальными значениями. Но она предсказывает полную универсальность показателей, то есть их независимость от деталей теории.

Основным недостатком теории является то, что она неприменима в тех случаях, когда существенными становятся флуктуации параметра порядка, то есть непосредственно в окрестности точки фазового перехода: Теория Ландау справедлива до тех пор, пока флуктуации в объеме с линейными размерами порядка радиуса корреляции малы по сравнению с равновесным значением параметра порядка. В противном случае термодинамический подход неприменим. Для самих точек фазового перехода теория даёт завышенные показания, а предсказываемые ей критические показатели отличаются от экспериментальных значений. Кроме того, критические показатели, согласно теории среднего поля, не зависят от размерностей пространства и параметра порядка. Для систем с размерностями d=1, d=2 теория среднего поля вообще не применима.

· Примеры фазовых переходов второго рода

· переход парамагнетик-ферромагнетик или парамагнетик -антиферромагнетик (параметр порядка -- намагниченность),

· переход металлов и сплавов в состояние сверхпроводимости (параметр порядка -- плотность сверхпроводящего конденсата),

· переход жидкого гелия в сверхтекучее состояние (п.п. -- плотность сверхтекучей компоненты),

· переход аморфных материалов в стеклообразное состояние.

7. Равновесие фаз

Равновесие фаз в термодинамике -- состояние, при котором фазы в термодинамической системе находятся в состоянии теплового , механического и химического равновесия.

Типы фазовых равновесий:

Тепловое равновесие означает, что все фазы вещества в системе имеют одинаковую температуру.

Механическое равновесие означает равенство давлений по разные стороны границы раздела соприкасающихся фаз. Строго говоря, в реальных системах эти давления равны лишь приближенно, разность давлений создается поверхностным натяжением.

Химическое равновесие выражается в равенстве химических потенциалов всех фаз вещества.

Условие равновесия фаз

Рассмотрим химически однородную систему (состоящую из частиц одного типа). Пусть в этой системе имеется граница раздела между фазами 1 и 2. Как было указано выше, для равновесия фаз требуется равенство температур и давлений на границе раздела фаз. Что состояние термодинамического равновесия в системе с постоянными температурой и давлением соответствует точке минимума потенциала Гиббса.

Потенциал Гиббса такой системы будет равен

где и -- химические потенциалы, а и -- числа частиц в первой и второй фазах соответственно.

При этом сумма (полное число частиц в системе) меняться не может, поэтому можно записать

Предположим, что, для определенности, . Тогда, очевидно, минимум потенциала Гиббса достигается при (все вещество перешло в первую фазу).

Таким образом, равновесие фаз возможно только в том случае, когда химические потенциалы этих фаз по разные стороны границы раздела равны:

Уравнение Клаперона-Клаузиса

Из условия равновесия фаз можно получить зависимость давления в равновесной системе от температуры. Если говорить о равновесии жидкость -- пар , то под давлением понимают давление насыщенных паров, а зависимость называется кривой испарения .

Из условия равенства химических потенциалов следует условие равенства удельных термодинамических потенциалов:, где

потенциал Гиббса i-й фазы, -- её масса.

а значит,

где и -- удельные объем и энтропия фаз. Отсюда следует, что

и окончательно

где -- удельная теплота фазового перехода (например, удельная теплота плавления или удельная теплота испарения).

Последнее уравнение называется уравнением Клапейрона -- Клаузиуса .

Правило фаз Гиббса

термодинамическом равновесии, число фаз не может превышать числа компонентов, увеличенного на 2 ; установлено Дж. У. Гиббсом в 1873--76.

Рассмотрим теперь систему, вообще говоря, химически неоднородную (состоящую из нескольких веществ). Пусть -- число компонентов (веществ) в системе, а -- число фаз. Условие равновесия фаз для такой системы можно записать в виде системы из уравнений:

Здесь -- химический потенциал для i-го компонента в j-й фазе. Он однозначно определяется давлением, температурой и концентрацией каждого компонента в фазе. Концентрации компонентов не независимы (их сумма равна 1). Поэтому рассматриваемая система уравнений содержит неизвестных (-- концентрации компонентов в фазах, плюс температура и давление).

Система разрешима, вообще говоря, если число уравнений не превышает числа неизвестных (система, не удовлетворяющая этому условию, также может быть разрешима, однако это исключительный случай, с которым в физике можно не считаться). Поэтому

то есть число фаз в равновесной системе может превышать число компонентов не более, чем на два.

Последнее неравенство называется правилом фаз Гиббса . В частном случае для однокомпонентной (химически однородной системы) оно превращается в условие

Список литературы

1. Арцимович Л.А. Элементарная физика плазмы, М.: ИНФРА-М, 2001.-597с.

2. Зельдович Б.И., Мышкис А.Д. Элементы математической физики. -- М.: Просвещение, 2001. -- 352с.

3. Кибец И. Н., Кибец В.И. Физика. Справочник. - Харьков: Фолио; Ростов н/Д: Феникс, 2003.-587с.

4. Рузавин Г.И. Концепции современного естествознания. М.: ИНФРА-М, 2003.-722с.

5. Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика: Учеб. пособие для студентов втузов. -- М.: Наука, 2002. -- 432с.

6. Франк-Каменецкий Д.А. Плазма - четвёртое состояние вещества, М, Просвещение, 2001.- 679с.

7. Интернет https://ru.wikipedia.org

Размещено на Allbest.ru

Подобные документы

    Достижение упорядоченности путем избавления системы от тепловой энергии. Агрегатные состояния вещества: твердое, жидкое и газообразное. Организация атомов в кристаллах, свойства сверхпроводимости и магнетизма. Ферромагнетики в условиях фазовых переходов.

    реферат , добавлен 26.09.2009

    Отклонение газов от идеальности. Формула Ван-дер-Ваальса. Термодинамические величины классической плазмы. Критические явления при фазовых переходах. Фазовые переходы и метастабильные состояния. Кинетика фазовых переходов и проблема роста квазикристаллов.

    реферат , добавлен 07.02.2016

    Коэффициент термического расширения, формулы. Фазовые переходы первого и второго рода в термодинамике. Плавление и кристаллизация, испарение и конденсация, сублимация и десублимация. График зависимости изменения объема воды от температуры и времени.

    лабораторная работа , добавлен 22.09.2013

    презентация , добавлен 22.10.2013

    Агрегатное состояние тела, его виды и характеристика. Процессы перехода из одного состояния в другое. Плавление - переход вещества из кристаллического (твёрдого) состояния в жидкое. Удельная теплота плавления, температура плавления и кипения воды.

    реферат , добавлен 08.01.2011

    Понятие фазового перехода и твердой растворимости. Типы фазовых диаграмм. Системы, их значение в микроэлектронике. Фазовые диаграммы, в которых в качестве одной из компонент фигурирует именно кремний. Двухфазная диаграмма и процесс отвердевания.

    реферат , добавлен 23.06.2010

    Понятие вещества и его состояния (твердое, жидкое, газообразное, плазменное), влияние изменения температуры. Физическое состояние газа, характеризующееся величинами: температура, давление, объем. Формулировка газовых законов: Бойля-Мариотта, Гей-Люссака.

    презентация , добавлен 09.04.2014

    Понятие и предмет термодинамики. Определение объемного состава и средней молярной массы смеси, а также вычисление парциальных объемов компонентов. Характеристика фазового равновесия и фазовых переходов. Основы введения в химическую термодинамику.

    контрольная работа , добавлен 29.03.2015

    Понятие и основные этапы кристаллизации как процесса фазового перехода вещества из жидкого состояния в твердое кристаллическое с образованием кристаллов. Физическое обоснование данного процесса в природе. Типы кристаллов и принципы их выращивания.

    презентация , добавлен 18.04.2015

    Фазами называют однородные различные части физико-химических систем. Фазовые переходы первого и второго рода. Идеальные и реальный газы. Молекулярно – кинетическая теория критических явлений. Характеристика сверхтекучести и сверхпроводимости элементов.

Понятие фаза в термодинамике рассматривают в более широком смысле, чем агрегатные состояния. Согласно , под фазой в термодинамике понимают термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества . Иногда неравновесное метастабильное состояние вещества также называют фазой, но метастабильной. Фазы вещества могут отличаться характером движения структурных частиц и наличием или отсутствием упорядоченной структуры. Различные кристаллические фазы могут отличаться друг от друга типом кристаллической структуры, электропроводностью, электрическими и магнитными свойствами и др. Жидкие фазы отличаются друг от друга концентрацией компонентов, наличием или отсутствием сверхпроводимости и т.п.

Переход вещества из одной фазы в другую называется фазовым переходом . К фазовым переходам относятся явления парообразования и плавления, конденсации и кристаллизации и др.. В двухфазной системе фазы находятся в равновесии при одной и той же температуре. При увеличении объёма некоторая часть жидкости превращается в пар, но при этом для поддержания температуры неизменной необходимо извне передать некоторое количество теплоты. Таким образом, для осуществления перехода из жидкой фазы в газообразную системе необходимо передать теплоту без изменения температуры системы. Эта теплота идёт на изменение фазового состояния вещества и называется теплотой фазового превращения или скрытой теплотой перехода . С повышением температуры скрытая теплота перехода фиксированной массы вещества уменьшается, а при критической температуре она равна нулю. Для характеристики фазового перехода используют удельную теплоту фазового перехода. Удельной теплотой фазового перехода называется количество скрытой теплоты, приходящейся на единицу массы вещества.

Фазовые переходы с поглощением или выделением скрытой теплоты перехода называются фазовыми переходами первого рода . При этом внутренняя энергия и плотность изменяются скачком. При переходе из более упорядоченного состояния в менее упорядоченное состояние энтропия увеличивается. В таблице приведены фазовые переходы первого рода и их основные характеристики.

Таблица. Фазовые переходы первого рада и их основные характеристики .

Фазовый переход

Направление перехода

Скрытая теплота перехода

Изменение энтропии при фазовом переходе

Парообразование

Жидкость  пар

L П – удельная теплота парообразования,

т- масса жидкости, переведённой в пар.

Энтропия возрастает

Конденсация

Пар  жидкость

, где

L КОН – величина удельной теплоты конденсации,

т- масса пара, переведённого в жидкость

Энтропия убывает

ΔS кр < 0

Плавление

Твёрдое тело жидкость

, где

L ПЛ – удельная теплота плавления,

т- масса твёрдого тела, переведённого в жидкость

Энтропия возрастает

ΔS пл > 0

Кристаллизация

Жидкость  твёрдое тело

, где

L КР

т- масса жидкости, переведённой в твёрдое тело - кристалл

Энтропия убывает

ΔS кр < 0

Сублимация

(или возгонка)

Твёрдое тело  Пар

, где

L С – удельная теплота сублимации,

т- масса твёрдого тела, переведённого в пар

Энтропия возрастает

Десублимация

(Кристаллизация минуя жидкую фазу)

Пар  твёрдое тело

(минуя жидкую фазу)

, где

L КР – величина удельной теплоты кристаллизации,

т- масса пара, переведённого в твёрдое тело - кристалл

Энтропия убывает

ΔS кр < 0

Существует связь между давлением, при котором находится в равновесии двухфазная система, и температурой при фазовых переходах первого рода. Эта связь описывается . Рассмотрим вывод этого уравнения для закрытых систем. Если число частиц в системе постоянно, то изменение внутренней энергии, согласно первому началу термодинамики, определяется выражением: . Равновесие между фазами наступит при условии, что Т 1 = Т 2 и Р 1 = Р 2 . Рассмотрим бесконечно малый обратимый цикл Карно (рис.6.8), изотермы которого соответствуют состоянию двухфазной системы при температурах Т и dT . Поскольку параметры состояния при этом изменяются бесконечно мало, изотермы и адиабаты на рис.6.8 изображены прямыми. Давление в таком цикле изменяется на величину dP . Работа системы за цикл определяется формулой:
. Предположим, что цикл реализован для системы масса вещества которой равна единице. Коэффициент полезного действия такого элементарного цикла Карно можно определить по формулам:
или
, гдеL П – удельная теплота парообразования. Приравнивая правые части этих равенств, и подставив выражение работы через давление и объём, получим:
. Соотнесём изменение давления с изменением температуры и получим:

(6.23)

Уравнение (6.23) называется уравнением Клапейрона – Клаузиуса . Анализируя это уравнение, можно заключить, что с ростом температуры давление увеличивается. Это следует из того, что
, а значит и
.

Уравнение Клапейрона – Клаузиуса применимо не только к переходу «жидкость – пар». Оно применимо ко всем переходам первого рода. В общем виде его можно записать так:

(6.24)

Используя уравнение Клапейрона – Клаузиуса можно представить диаграмму состояний системы в координатах Р,Т (рис.6.9). На этой диаграмме кривая 1 – кривая сублимации. Она соответствует равновесному состоянию двух фаз: твёрдой и парообразной. Точки, лежащие слева от этой кривой характеризуют однофазное твёрдое состояние. Точки, лежащие справа, характеризуют парообразное состояние. Кривая 2 – кривая плавления. Она соответствует равновесному состоянию двух фаз: твёрдой и жидкой. Точки, лежащие слева от этой кривой характеризуют однофазное твёрдое состояние. Точки, лежащие справа от неё до кривой 3, характеризуют жидкое состояние. Кривая 3 – кривая парообразования. Она соответствует равновесному состоянию двух фаз: жидкой и парообразной. Точки, лежащие слева от этой кривой характеризуют однофазное жидкое состояние. Точки, лежащие справа, характеризуют парообразное состояние. Кривая 3, в отличии от кривых 1 и 2, ограничена с двух сторон. С одной стороны – тройной точкой Тр , с другой стороны - критической точкой К (рис.6.9). Тройная точка описывает равновесное состояние сразу трёх фаз: твёрдой, жидкой и парообразной.

Фа́зовый перехо́д (фазовое превращение) в термодинамике - переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры , давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния , всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы - более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но и при изменении концентрации компонентов (например, появление кристалликов соли в растворе , который достиг насыщения).

Классификация фазовых переходов

В последнее время широкое распространение получило понятие квантовый фазовый переход , то есть фазовый переход, управляемый не классическими тепловыми флуктуациями , а квантовыми, которые существуют даже при абсолютном нуле температур , где классический фазовый переход не может реализоваться вследствие теоремы Нернста .

Динамика фазовых переходов

Как сказано выше, под скачкообразным изменением свойств вещества имеется в виду скачок при изменении температуры и давления. В реальности же, воздействуя на систему, мы изменяем не эти величины, а её объем и её полную внутреннюю энергию. Это изменение всегда происходит с какой-то конечной скоростью, а значит для того, чтобы «покрыть» весь разрыв в плотности или удельной внутренней энергии, нам требуется некоторое конечное время. В течение этого времени фазовый переход происходит не сразу во всём объёме вещества, а постепенно. При этом в случае фазового перехода первого рода выделяется (или забирается) определённое количество энергии, которая называется теплотой фазового перехода . Для того, чтобы фазовый переход не останавливался, требуется непрерывно отводить (или подводить) это тепло, либо компенсировать его совершением работы над системой.

В результате, в течение этого времени точка на фазовой диаграмме, описывающая систему, «замирает» (то есть давление и температура остаются постоянными) до полного завершения процесса.

Напишите отзыв о статье "Фазовый переход"

Примечания

Литература

  • Базаров И. П. - М .: Высшая школа, 1991, 376 с.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-ое испр. - М .: Едиториал УРСС, 2003. 120 с.
  • Карякин Н. В. Основы химической термодинамики. - М .: Академия, 2003. - 463 с. - (Высшее профессиональное образование). - ISBN 5-7695-1596-1.
  • Квасников И. А. Термодинамика и статистическая физика. Т.1: Теория равновесных систем: Термодинамика. - Том.1. Изд. 2, испр. и доп. - М .: УРСС, 2002. 240 с.
  • Стенли. Г. Фазовые переходы и критические явления. - М .: Мир, 1973.
  • Паташинский А. З., Покровский В. Л. Флуктуационная теория фазовых переходов. - М .: Наука, 1981.
  • Гуфан Ю. М. . Термодинамическая теория фазовых переходов. - Ростов н/Д: Издательство Ростовского университета, 1982. - 172 с.

См. также

Ссылки

  • с интерактивными моделями на Java
  • Пермского государственного университета

Отрывок, характеризующий Фазовый переход

Он повторял уже слышанное мною.
– Нет! – сразу же отрезала я. – Я не поэтому сюда пришла, ты знаешь, Север. Я пришла за помощью. Только вы можете помочь мне уничтожить Караффу. Ведь в том, что он творит – и ваша вина. Помогите же мне!
Север ещё больше погрустнел... Я заранее знала, что он ответит, но не намеревалась сдаваться. На весы были поставлены миллионы хороших жизней, и я не могла так просто отказаться от борьбы за них.
– Я уже объяснил тебе, Изидора...
– Так объясни ещё! – резко прервала его я. – Объясни мне, как можно спокойно сидеть, сложа руки, когда человеческие жизни гаснут одна за другой по твоей же вине?! Объясни, как такая мразь, как Караффа, может существовать, и ни у кого не возникает желание даже попробовать уничтожить его?! Объясни, как ты можешь жить, когда рядом с тобой происходит такое?..
Горькая обида клокотала во мне, пытаясь выплеснуться наружу. Я почти кричала, пытаясь достучаться до его души, но чувствовала, что теряю. Обратного пути не было. Я не знала, получится ли ещё когда-нибудь попасть туда, и должна была использовать любую возможность, прежде чем уйти.
– Оглянись, Север! По всей Европе пылают живыми факелами твои братья и сёстры! Неужели ты можешь спокойно спать, слыша их крики??? И как же тебе не сняться кровавые кошмары?!
Его спокойное лицо исказила гримаса боли:
– Не говори такого, Изидора! Я уже объяснял тебе – мы не должны вмешиваться, нам не дано такое право... Мы – хранители. Мы лишь оберегаем ЗНАНИЯ.
– А тебе не кажется, что подожди Вы ещё, и Ваши знания уже не для кого будет сохранять?!. – горестно воскликнула я.
– Земля не готова, Изидора. Я уже говорил тебе это...
– Что ж, возможно она никогда готовой не будет... И когда-нибудь, через каких-нибудь тысячу лет, когда ты будешь смотреть на неё со своих «вершин», ты узришь лишь пустое поле, возможно даже поросшее красивыми цветами, потому что на Земле в это время уже не будет людей, и некому будет срывать эти цветы... Подумай, Север, такое ли будущее ты желал Земле?!..
Но Север был защищён глухой стеной веры в то, что говорил... Видимо, они все железно верили, что были правы. Или кто-то когда-то вселил эту веру в их души так крепко, что они проносили её чрез столетия, не открываясь и не допуская никого в свои сердца... И я не могла через неё пробиться, как бы ни старалась.
– Нас мало, Изидора. И если мы вмешаемся, не исключено, что мы тоже погибнем... А тогда проще простого будет даже для слабого человека, уже не говоря о таком, как Караффа, воспользоваться всем, что мы храним. И у кого-то в руках окажется власть над всеми живущими. Такое уже было когда-то... Очень давно. Мир чуть не погиб тогда. Поэтому – прости, но мы не будем вмешиваться, Изидора, у нас нет на это права... Наши Великие Предки завещали нам охранять древние ЗНАНИЯ. И это то, для чего мы здесь. Для чего живём. Мы не спасли даже Христа когда-то... Хотя могли бы. А ведь мы все очень любили его.
– Ты хочешь сказать, что кто-то из Вас знал Христа?!.. Но это ведь было так давно!.. Даже Вы не можете жить так долго!
– Почему – давно, Изидора?– искренне удивился Север. – Это было лишь несколько сотен назад! А мы ведь живём намного дольше, ты знаешь. Как могла бы жить и ты, если бы захотела...
– Несколько сотен?!!! – Север кивнул. – Но как же легенда?!.. Ведь по ней с его смерти прошло уже полторы тысячи лет?!..
– На то она «легенда» и есть... – пожал плечами Север, – Ведь если бы она была Истиной, она не нуждалась бы в заказных «фантазиях» Павла, Матфея, Петра и им подобных?.. При всём при том, что эти «святые» люди ведь даже и не видели никогда живого Христа! И он никогда не учил их. История повторяется, Изидора... Так было, и так будет всегда, пока люди не начнут, наконец, самостоятельно думать. А пока за них думают Тёмные умы – на Земле всегда будет властвовать лишь борьба...
Север умолк, как бы решая, стоит ли продолжать. Но, немного подумав, всё же, заговорил снова...
– «Думающие Тёмные», время от времени дают человечеству нового Бога, выбирая его всегда из самых лучших, самых светлых и чистых,… но именно тех, которых обязательно уже нет в Круге Живых. Так как на мёртвого, видишь ли, намного легче «одеть» лживую «историю его Жизни», и пустить её в мир, чтобы несла она человечеству лишь то, что «одобрялось» «Думающими Тёмными», заставляя людей окунаться ещё глубже в невежество Ума, пеленая Души их всё сильнее в страх неизбежной смерти, и надевая этим же оковы на их свободную и гордую Жизнь...
– Кто такие – Думающие Тёмные, Север? – не выдержала я.
– Это Тёмный Круг, в который входят «серые» Волхвы, «чёрные» маги, денежные гении (свои для каждого нового промежутка времени), и многое тому подобное. Проще – это Земное (да и не только) объединение «тёмных» сил.
– И Вы не боретесь с ними?!!! Ты говоришь об этом так спокойно, как будто это тебя не касается!.. Но ты ведь тоже живёшь на Земле, Север!
В его глазах появилась смертельная тоска, будто я нечаянно затронула нечто глубоко печальное и невыносимо больное.
– О, мы боролись, Изидора!.. Ещё как боролись! Давно это было... Я, как и ты сейчас, был слишком наивным и думал, что стоит людям лишь показать, где правда, а где ложь, и они тут же кинутся в атаку за «правое дело». Это всего лишь «мечты о будущем», Изидора... Человек, видишь ли, существо легко уязвимое... Слишком легко поддающееся на лесть и жадность. Да и другие разные «человеческие пороки»... Люди в первую очередь думают о своих потребностях и выгодах, и только потом – об «остальных» живущих. Те, кто посильнее – жаждут Власти. Ну, а слабые ищут сильных защитников, совершенно не интересуясь их «чистоплотностью». И это продолжается столетиями. Вот почему в любой войне первыми гибнут самые светлые и самые лучшие. А остальные «оставшиеся» присоединяются к «победителю»... Так и идёт по кругу. Земля не готова мыслить, Изидора. Знаю, ты не согласна, ибо ты сама слишком чиста и светла. Но одному человеку не по силам свергнуть общее ЗЛО, даже такому сильному, как ты. Земное Зло слишком большое и вольное. Мы пытались когда-то... и потеряли лучших. Именно поэтому, мы будем ждать, когда придёт правильное время. Нас слишком мало, Изидора.
– Но почему тогда Вы не пытаетесь воевать по-другому? В войну, которая не требует Ваших жизней? У Вас ведь есть такое оружие! И почему разрешаете осквернять таких, как Иисус? Почему не расскажете людям правду?..


Вселенная может вот-вот рухнуть и все в ней - в том числе и мы - будет сжиматься в маленький, твердый шар. Процесс может уже начался где-то в нашем космосе и захватывает остальные части Вселенной. Мы на пороге Фазового перехода.

Физики исследователи из Дании утверждают, что они доказали, что это возможно на основе математических уравнений. Основой теории является то, что рано или поздно произойдет радикальный сдвиг во вселенной и каждая частица в ней, станет чрезвычайно тяжелой.


Все - каждая песчинка, каждая планета и каждая галактика - станет в миллиарды раз тяжелее, чем сейчас. Согласно теории Хиггса, после Большого взрыва материя нашего мира испытала несколько последовательных превращений, сходных с теми, которые при остывании претерпевает вода (она, как известно, превращается из пара в жидкость, а при дальнейшем охлаждении – в кристалл) или, скажем, магнит (при высоких температурах кусок железа не магнитит, магнитные свойства появляются только, когда температура падает, кажется, до 500о С).


Такие превращения называются в физике фазовыми переходами. Фазовые переходы приводят к радикальному изменению свойств материалов, как это должно быть известно каждому из повседневного опыта. Есть изменения очевидные (вода и пар не обладают жесткостью, а лед обладает), а есть и не столь очевидные (например, в кристаллах есть три рода звука, распространяющиеся, вообще говоря, с разными скоростями, а в жидкостях и газах, - только один). Фазовые переходы, происшедшие в ранней Вселенной, привели к радикальному изменению действующих в ней фундаментальных сил, вызвав сдвиг в ткани пространства-времени.

Во время этого перехода, пустое пространство наполнилось невидимой субстанцией, которую мы сейчас называем поле Хиггса. Поле Хиггса или хиггсовское поле - поле, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума, названо по имени разработчика его теории, английского физика Питера Хиггса. Квант этого поля - хиггсовская частица (хиггсовский бозон). Некоторые элементарные частицы взаимодействуют с этой областью, получая энергию в процессе взаимодействия.


Используя математические уравнения, исследователи из Университета Южной Дании обнаружили, что поле Хиггса может существовать в двух состояниях, как материя может существовать в виде жидкости или твердого тела.

Во втором состоянии, поле Хиггса в миллиарды раз более плотное, чем то, что ученые уже наблюдали. Если это сверхплотное поле Хиггса существует, то "пузырь" из этого состояния может внезапно появиться в определенном месте Вселенной в любое время. Пузырь затем развернется на скорости света, охватывая все пространство сворачивая поля Хиггса.


Все элементарные частицы внутри пузыря наберут массу гораздо тяжелее, чем если бы они были за пределами пузыря и они будут соединены вместе, чтобы сформировать сверхмассивный центр, пишет dailymail.co.uk


"Многие теории и расчеты предсказывали такой фазовый переход и раньше, но была некоторая неопределенность", - говорит Йенс Крог из Университета Южной Дании.


"Сейчас мы провели более точные расчеты и мы видим две вещи: Да, Вселенная, вероятно рухнет и крах ее еще более вероятен, чем предсказывали старые расчеты», - добавляет он.


"Фазовый переход начнется где-то во Вселенной, откуда распространиться везде. Может быть, переход уже начался где-то во вселенной и сейчас он распространяется в остальной Вселенной".

"Может быть, свертывание начинается прямо здесь и сейчас. Или, может быть оно начнется через миллиард лет. Мы не знаем. Точное время предсказать просто невозможно. Это уже происходит или произойдет", - говорят ученые.


Исследователи основываются на трех основных уравнениях, лежащих в основе предсказания фазового перехода. Хотя новые расчеты предсказывают, что переход сейчас вероятнее, чем когда-либо прежде, также возможно, что это не произойдет вообще. Необходимым условием такого развития событий является современное представление о том, что Вселенная состоит из элементарных частиц, которые мы знаем сегодня, в том числе частицы Хиггса. Если Вселенная содержит неизвестные частицы, вся основа для прогнозирования изменения фазы окажется ошибочной.

Понравилась статья? Поделиться с друзьями: