Звезды и их развитие кратко. Время жизни звезд

Звезду массой т ☼ и радиусом R можно характеризовать ее потенциальной энергией Е. Потенциальной, или гравитационной, энергией звезды называется работа, которую надо затратить, чтобы распылить вещество звезды на бесконечность. И наоборот, эта энергия высвобождается при сжатии звезды, т.е. при уменьшении ее радиуса. Значение этой энергии можно вычислить при помощи формулы:

Потенциальная энергия Солнца равна: Е ☼ = 5,9∙10 41 Дж.

Теоретическое исследование процесса гравитационного сжатия звезды показало, что приблизительно половину своей потенциальной энергии звезда излучает, тогда, как вторая половина тратится на повышение температуры ее массы приблизительно до десяти миллионов кельвинов. Нетрудно, однако, убедиться, что эту энергию Солнце высветило бы за 23 млн. лет. Итак, гравитационное сжатие может быть источником энергии звезд только на некоторых, довольно кратких этапах их развития.

Теорию термоядерного синтеза сформулировали в 1938 г. немецкие физики Карл Вейцзеккер и Ганс Бете. Предпосылкой этого было, во-первых, определение в 1918 г. Ф. Астоном (Англия) массы атома гелия, который равняется 3,97 массы атома водорода, во-вторых, выявление в 1905 г. связи между массой тела т и его энергией Е в виде формулы Эйнштейна:

где с – скорость света, в-третьих, выяснение в 1929 г. того, что благодаря туннельному эффекту две одинаково заряженные частицы (два протона) могут сближаться на расстояние, где превосходящей будет сила притяжения, а также открытие в 1932 г. позитрона е+ и нейтрона п.

Первой и наиболее эффективной из реакций термоядерного синтеза есть образования из четырех протонов р ядра атома гелия по схеме:

Очень важно то, что здесь возникаетдефект массы: масса ядра гелия равняется 4,00389 а.е.м., тогда как масса четырех протонов 4,03252 а.е.м. За формулой Эйнштейна вычислим энергию, которая выделяется во время образования одного ядра гелия:

Нетрудно подсчитать, что если бы Солнце на начальной стадии развития состояло из одного водорода, то его превращение в гелий было бы достаточным для существования Солнца как звезды при нынешних потерях энергии около 100 млрд. лет. На самом деле же идет речь о «выгорании» около 10% водорода из глубочайших недр звезды, где температура достаточна для реакций синтеза.

Реакции синтеза гелия могут проходить двумя путями. Первый называется рр-циклом, второй – С NО-циклом. В том и другому случае дважды в каждом ядре гелия протон превращается в нейтрон по схеме:

,

где V - нейтрино.

В таблице 1 указано среднее время каждой из термоядерных реакций синтеза, промежуток, за который количество исходных частичек уменьшится в е раз.

Таблица 1. Реакции синтеза гелия.

Эффективность реакций синтеза характеризуется мощностью источника, количеством энергии, которая высвобождается в единице массы вещества за единицу времени. Из теории вытекает, что

, тогда как. Граница температуры Т, выше которой главную роль сыграет не рр-, а CNO-цикл , равна 15∙10 6 К. В недрах Солнца основную роль сыграет рр- цикл. Именно потому, что первая из его реакций имеет очень большое характерное время (14 млрд. лет), Солнце и подобные ему звезды проходят свой эволюционный путь около десяти миллиардов лет. Для более массивных белых звезд это время у десятки и сотни раз меньше, поскольку значительно меньшим есть характерное время основных реакций CNO- цикла.

Если температура в недрах звезды после исчерпания там водорода достигнет сотен миллионов кельвинов, а это возможно для звезд с массой т >1,2m ☼ , то источником энергии становится реакция преобразования гелия в углерод по схеме:

. Расчет показывает, что запасы гелия звезда истратит приблизительно за 10 млн. лет. Если ее масса достаточно большая, ядро продолжает сжиматься и при температуре свыше 500 млн. градусов становятся возможными реакции синтеза более сложных атомных ядер по схеме:

При высших температурах перебегают такие реакции:

и т.д. вплоть до образования ядер железа. Это реакции экзотермические, вследствие их хода энергия высвобождается.

Как знаем, энергия, которую излучает звезда в окружающее пространство, выделяется в ее недрах и постепенно просачивается к поверхности звезды. Это перенесение энергии через толщу вещества звезды может осуществляться двумя механизмами: лучистым переносом или конвекцией.

В первом случае речь идет о многоразовом поглощении и переизлучении квантов. Фактически при каждом таком акте проходит дробление квантов, поэтому вместо жестких γ-квантов, которые возникают при термоядерном синтезе в недрах звезды до поверхности ее доходят миллионы квантов низкой энергии. При этом исполняется закон сохранения энергии.

В теории переноса энергии введено понятие длинны свободного пробеге кванта некоторой частоты υ. Нетрудно сориентироваться, что в условиях звездных атмосфер, длина свободного пробега кванта не превышает нескольких сантиметров. И время просачивания квантов энергии от центра звезды к ее поверхности измеряется миллионами лет.Однако в недрах звезд могут сложиться условия, при которых такое лучистое равновесие нарушается. Аналогично ведет себя вода в сосуде, который подогревают снизу. Определенное время здесь жидкость находится в состоянии равновесия, так как молекула, получив излишек энергии непосредственно от дна сосуда, успевает передать часть энергии за счет столкновений другим молекулам, которые находятся выше. Тем самым устанавливается определенный градиент температуры в сосуде от ее дна к верхнему краю. Однако со временем скорость, с которой молекулы могут передавать энергию вверх за счет столкновений, становится меньше темпа передачи тепла снизу. Наступает кипение – перенос тепла непосредственным перемещением вещества.

Звезда -- небесное тело, в котором идут, шли или будут идти термоядерные реакции. Звезды представляют собой массивные светящиеся газовые (плазменные) шары. Образующиеся из газово-пылевой среды (водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности -- тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Звезды - это огромные объекты, шаровидной формы, состоящие из гелия и водорода, а также других газов. Энергия звезды содержится в ее ядре, где ежесекундно гелий взаимодействует с водородом. Как все органическое в нашей вселенной, звезды возникают, развиваются, изменяются и исчезают - этот процесс занимает миллиарды лет и называется процессом «Эволюции звезд».

1. Эволюция звезд

Эволюция звезд -- последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. Звезда начинает свою жизнь как холодное разряжённое облако межзвёздного газа (разряженная газовая среда, заполняющая всё пространство между звёздами), сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации (универсальное фундаментальное взаимодействие между всеми материальными телами) переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной -- в ней доминируют реакции водородного цикла. В таком состоянии он пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга -- Расселла (рис. 1) (показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды, 1910 год), пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии. В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается -- звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий -- в углерод, углерод -- в кислород, кислород -- в кремний, и наконец -- кремний в железо).

2. Термоядерный синтез в недрах звезд

К 1939 году было установлено, что источником звёздной энергии является термоядерный синтез, происходящий в недрах звёзд. Большинство звёзд излучаются потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным, или p-p-циклом, и углеродно-азотным, или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых -- вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции. Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см?. Молекулярное облако имеет плотность около миллиона молекул на см?. Масса такого облака превышает массу Солнца в 100 000--10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике. Пока облако свободно вращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нем могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому -- столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождением облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут инициировать процесс образования звезды. Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием сил гравитационного притяжения собираться вокруг центра будущей звезды. Половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина -- на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается, и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В итоге градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент невидим. Дальнейшая эволюция протозвезды - это аккреция продолжающего падать на «поверхность» ядра вещества, которое за счет этого растет в размерах. Масса свободно перемещающегося в облаке вещества исчерпывается, и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды. Процесс формирования звёзд можно описать единым образом, но последующие стадии развития звезды почти полностью зависят от её массы, и лишь в самом конце звёздной эволюции свою роль может сыграть химический состав.

3. Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе -- от 0,0767 до более чем 200 солнечных масс. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь идёт не о физическом перемещении звезды -- только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды. Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности сотни миллиардов лет, в то время как массивные сверхгиганты уйдут с главной последовательности уже через несколько миллионов лет после формирования. Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность. По прошествии определенного времени -- от миллиона до десятков миллиардов лет, в зависимости от начальной массы -- звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций. Без давления, возникавшего в ходе этих реакций и уравновешивавшего собственное гравитационное притяжение звезды, звезда снова начинает сжатие, как уже было раньше, в процессе ее формирования. Температура и давление снова повышаются, но, в отличие от стадии протозвезды, до более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия. Возобновившееся на новом уровне термоядерное горение вещества становится причиной чудовищного расширения звезды. Звезда «разрыхляется», и её размер увеличивается приблизительно в 100 раз. Таким образом, звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами. То, что происходит в дальнейшем, вновь зависит от массы звезды.

4. Поздние годы и гибель звезд

Старые звёзды с малой массой

На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах. Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше, чем коричневый карлик. Звезды с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в ядре прекратятся реакции с участием водорода -- их масса слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до той степени, которая инициирует «возгорание» гелия. К таким звёздам относятся красные карлики, такие как Проксима Центавра, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта в ее ядре заканчивается водород и начинаются реакции синтеза углерода из гелия. Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается, что приводит к тому, что внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новый этап в жизни звезды и продолжается некоторое время. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет. Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа, OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров. Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые, в конечном итоге, сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность. В центре туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

Белые карлики

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает серьезную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга -- Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды); в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара -- как нейтронная звезда (пульсар); если же масса превышает предел Оппенгеймера -- Волкова -- как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями вспышками сверхновых. Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой. У звезд более массивных, чем Солнце, давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра, что приводит к превращению протонов в нейтроны, между которыми не существует сил электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая, фактически, представляет теперь одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн. раз превышает плотность воды. Такой объект называют нейтронной звездой.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять солнечных, входит в стадию красного сверхгиганта, ее ядро под действием сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра. В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. На этом этапе дальнейший термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять тяжести наружных слоев звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества. То, что происходит в дальнейшем, пока неясно до конца, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной силы. Сопутствующий этому всплеск нейтрино провоцирует ударную волну. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала -- так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, что, однако, не является единственно возможным способом их образования, к примеру, это демонстрируют технециевые звёзды. Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «мусором», и возможно, участвовать в образовании новых звёзд, планет или спутников. Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остается момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром, где они, сливаясь с протонами, образуют нейтроны. Этот процесс называется нейтронизацией. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов. Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы -- не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал, по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой. Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила. Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект -- это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.

Если где-то во Вселенной накапливается достаточно вещества, оно сжимается в плотный комок, в котором начинается термоядерная реакция. Так зажигаются звёзды. Первые вспыхнули во тьме юной Вселенной 13,7 миллиардов (13,7*10 9) лет назад, а наше Солнце — всего каких-то 4,5 миллиарда лет назад. Срок жизни звезды и процессы, происходящие в конце этого срока, зависят от массы звезды.

Пока в звезде продолжается термоядерная реакция превращения водорода в гелий, она находится на главной последовательности . Время нахождения звезды на главной последовательности зависит от массы: самые большие и тяжёлые быстро доходят до стадии красного гиганта, а затем сходят с главной последовательности в результате взрыва сверхновой или образования белого карлика.

Судьба гигантов

Самые большие и массивные звёзды сгорают быстро и взрываются сверхновыми. После взрыва сверхновой остаётся нейтронная звезда или чёрная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая после становится материалом для новых звёзд. Из наших ближайших звёздных соседей такая судьба ждёт, например, Бетельгейзе , однако когда она взорвётся, подсчитать невозможно.

Туманность, образовавшаяся в результате выброса материи при взрыве сверхновой. В центре туманности — нейтронная звезда.

Нейтронная звезда — это страшный физический феномен. Ядро взорвавшейся звезды сжимается — примерно так же, как газ в двигателе внутреннего сгорания, только в очень большом и эффективном: шар диаметром в сотни тысяч километров превращается в шарик от 10 до 20 километров в поперечнике. Сила сжатия так велика, что электроны падают на атомные ядра, образуя нейтроны — отсюда название.


NASA Нейтронная звезда (видение художника)

Плотность материи при таком сжатии вырастает примерно на 15 порядков, а температура поднимается до непредставимых 10 12 К в центре нейтронной звезды и 1 000 000 К на периферии. Часть этой энергии излучается в форме фотонного излучения, часть уносят с собой нейтрино, образующииеся в ядре нейтронной звезды. Но даже за счёт очень эффективного нейтринного охлаждения нейтронная звезда остывает очень медленно: для полного исчерпания энергии требуется 10 16 или даже 10 22 лет. Что останется на месте остывшей нейтронной звезды, сказать сложно, а пронаблюдать — невозможно: мир слишком для этого слишком молод. Существует предположение о том, что на месте остывшей звезды опять-таки образуется чёрная дыра.


Черные дыры возникают в результате гравитационного коллапса очень массивных объектов — например, при взрывах сверхновых. Возможно, через триллионы лет в чёрные дыры превратятся остывшие нейтронные звёзды.

Участь звёзд средних масштабов

Другие, менее массивные звёзды дольше, чем самые большие, остаются на главной последовательности, зато, сойдя с неё, умирают гораздо быстрее, чем их нейтронные родственники. Больше 99% звёзд во Вселенной никогда взорвутся и не превратятся ни в черные дыры, ни в нейтронные звёзды — их ядра слишком малы для таких космических драм. Вместо этого звёзды средней массы в конце жизни превращаются в красные гиганты, которые, в зависимости от массы, превращаются в белые карлики, взрываются, полностью рассеиваясь, или становятся нейтронными звёздами.

Белые карлики составляют сейчас от 3 до 10% звёздного населения Вселенной. Их температура очень велика — более 20 000 К, более чем втрое больше, чем температура поверхности Солнца — но всё-таки меньше, чем у нейтронных звёзд, и благодаря более низкой температуре и большей площади белые карлики остывают быстрее — за 10 14 — 10 15 лет. Это означает, что в ближайшие 10 триллионов лет — когда Вселенная станет в тысячу раз старше, чем сейчас, — во вселенной появится новый тип объекта: чёрный карлик, продукт остывания белого карлика.

Пока черных карликов в космосе нет. Даже самые старые остывающие звёзды на сегодняшний день потеряли максимум 0,2% своей энергии; для белого карлика с температурой в 20 000 К это означает остывание до 19 960 K.

Для самых маленьких

О том, что происходит, когда остывают самые маленькие звёзды — такие, как наш ближайший сосед, красный карлик Проксима Центавра, науке известно ещё меньше, чем о сверхновых и чёрных карликах. Термоядерный синтез в их ядрах идёт медленно, и на главной последовательности они остаются дольше остальных — по некоторым расчётам, до 10 12 лет, а после, предположительно, продолжат жизнь как белые карлики, то есть будут сиять еще 10 14 — 10 15 лет до превращения в чёрный карлик.


Федеральное агентство по образованию

ГОУ ВПО

Уфимская государственная академия экономики и сервиса

кафедра «Физика»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Концепции современного естествознания»

на тему «Звёзды и их эволюция»

Выполнил: Лавриненко Р. С.

группа СЗ-12

Проверила: Алтайская А. В.

Уфа-2010

Введение…………………………………………………………………………...3

Этапы эволюции звёзд……………………………………………………………5

Характеристики и химический состав звёзд………………………...................11

Прогноз эволюции Солнца…………………………………………...................20

Источники тепловой энергии звёзд……………………………………….........21

Заключение…………………………………………………………..............

Литература…………………………………………………………………………

Введение

В ясную безлунную ночь невооруженным глазом над горизонтом можно видеть около 3000 звезд. И всякий раз, смотря на звездное небо, мы задаем себе вопрос - что же такое звезды? Поверхностный взгляд найдет сходство между звездами и планетами. Ведь и планеты при наблюдении простым глазом видны как светящиеся точки различной яркости. Однако уже за несколько тысячелетий до нас внимательные наблюдатели неба – пастухи и земледельцы, мореплаватели и участники караванных переходов – приходили к убеждению, что звезды и планеты – различные по своей природе явления. Планеты, так же как Луна и Солнце, изменяют свое положение на небе, перемещаются из одного созвездия в другое и за год успевают пройти значительный путь, а звезды неподвижны одна относительно другой. Даже глубокие старики видят очертания созвездий совершенно такими же, какими они их видели в детстве.

Звезды не могут принадлежать к Солнечной системе. Если бы они были примерно на таком же расстоянии, как и планеты, то невозможно было бы найти объяснение их видимой неподвижности. Естественно считать, что звезды тоже движутся в пространстве, но они далеки от нас, что видимое перемещение их ничтожно. Создается иллюзия неподвижности звезд. Но если звезды так далеки, то при видимой яркости, сравнимой с видимой яркостью планет, они должны изучать во много раз мощнее, чем планеты. Такой ход рассуждений приводил к мысли, что звезды – это тела, по своей природе сходные с Солнцем. Эту мысль отстаивал Джордано Бруно. Но окончательно вопрос разрешился после двух открытий. Первое сделал Галлей в 1718 г. Он показал условность традиционного названия «неподвижные звёзды». Чтобы уточнить постоянную прецессии, он сравнил современные ему каталоги звёзд с античными, и прежде всего с каталогом Гиппарха (около 129 г. до н. э.) - первым звёздным каталогом, который упоминается в исторических документах и с каталогом в «Альмагесте 1 » Птолемея (138 г. н. э). На фоне однородной картины, закономерного смещения всех звёзд, Галлей обнаружил удивительный факт: «Три звезды: …или Глаз Тельца Альдебаран, Сириус и Арктур прямо противоречили этому правилу». Так было открыто собственное движение звёзд. Оно получило окончательное признание в 70-е годы XVIII века, после измерения немецким астрономом Тобиасом Майером и английским астрономом Невилом Маскелайном собственных движений десятков звёзд. Второе открытие сделал в 1824 г. Йозеф Фраунгофер, произведя первые наблюдения спектров звезд. В дальнейшем, подробные исследования спектров звезд, привели к выводу, что звезды, как и Солнце, состоят из газа, имеющего высокую температуру, а также, что спектры всех звезд могут быть распределены на несколько классов и спектр Солнца принадлежит одному из этих классов. Из этого следует, что свет звезд имеет ту же природу, что и свет Солнца.

Солнце – одна из звезд. Это очень близкая к нам звезда, с которой Земля физически связана, вокруг которой она движется. Но звезд огромное множество, они имеют различный блеск, различный цвет, они излучают огромное количество энергии в пространство и поэтому теряя эту энергию, не могут не изменяться: они должны проходить какой-то путь эволюции.

Этапы эволюции звезд

Звезды – грандиозные плазменные системы, в которых физические характеристики, внутреннее строение и химический состав изменяются со временем. Время звездной эволюции очень велико, и не возможно непосредственно проследить эволюцию той или иной конкретной звезды. Это компенсируется тем, что каждая из множества звезд на небе проходит некоторый этап эволюции. Суммируя наблюдения, можно восстановить общую направленность звездной эволюции (по диаграмме Герцшпрунга – Рессела (Рисунок 1) она отображается главной последовательностью и отступлением от нее вверх и вниз).

Pисунок 1. Диаграмма Герцшпрунга-Рассела

На диаграмме Герцшпрунга-Рассела звезды распределены неравномерно. Около 90% звезд сконцентрировано в узкой полосе, пересекающей диаграмму по диагонали. Эту полосу называют главной последовательностью. Её верхний конец расположен в области ярких голубых звезд. Различие в заселенности звезд, находящихся на главной последовательности и областей, примыкающих к главной последовательности, составляет несколько порядков величины. Причина в том, что на главной последовательности находятся звезды на стадии горения водорода, которая составляет основную часть времени жизни звезды. Солнце находится на главной последовательности. Следующие по населенности области после главной последовательности - белые карлики, красные гиганты и красные сверх-гиганты. Красные гиганты и сверхгиганты - это в основном звезды на стадии горения гелия и более тяжелых ядер.

Современная теория строения и эволюции звезд объясняет общий ход развития звезд в хорошем согласии с данными наблюдения.

Основные фазы в эволюции звезды – ее рождение (звездообразование); длительный период (обычно стабильного) существования звезды как целостной системы, находящейся в гидродинамическом и тепловом равновесии; и, наконец, период ее «смерти», т.е. необратимое нарушение равновесия, которое ведет к разрушению звезды или к ее катастрофическому сжатию.

Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания и вступить в реакцию термоядерного синтеза.

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия. Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности - и наружу. Одновременно давление в центре звезды начинает расти. Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции. Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиардов лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Для звезд с массой, превышающей солнечную массу в 15 раз, время стабильного существования оказывается всего около 10 млн лет. Это крайне незначительное время по космическим меркам, ведь время, отведенное для нашего Солнца, на 3 порядка выше – около 10 млрд лет.

Рано или поздно, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх - и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий - своего рода «пепел» затухающей первичной реакции нуклеосинтеза - вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, - один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно большую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса - на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа. Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза - углерода, затем кремния, магния - и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо - это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени (некоторые теоретики полагают, что на это уходят считанные секунды) свободные, на протяжении всей предыдущей эволюции звезды, электроны буквально растворяются в протонах ядер железа. Всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра - и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки, у звезд массой порядка 10-30 солнечных масс, продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов. Иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

Из глобул возникают звёзды , вспомним, что все звёзды излучают и их излучение оказывает... то период обращения обеих звёзд относительно их общего центра тяжести равен... последних этапах своей эволюции теряют устойчивость. Такие звёзды могут взорваться как...

  • Эволюция звезд (6)

    Реферат >> Биология

    Диаграмму зависимости светимостей звёзд от их спектральных классов (диаграмма... , в окрестности Солнца большинство звёзд сконцентрированы вдоль сравнительно узкой полосы... разных расстояниях. Звезды эволюционируют, и их эволюция необратима, так как все в...

  • Эволюция газеты в России

    Реферат >> Журналистика

    Введение............................................................................................................3 Глава I. Эволюция газеты в России в... которого, лишив трёх звёзд Героя Социалистического Труда... протяжении всего пути их эволюции , который не...

  • Как и любые тела в природе, звезды тоже не могут оставаться неизменными. Они рождаются, развиваются и, наконец, «умирают». Эволюция звезд занимает миллиарды лет, а вот по поводу времени их образования ведутся споры. Раньше астрономы считали, что процесс их «рождения» из звездной пыли требует миллионы лет, но не так давно были получены фотографии области неба из состава Большой Туманности Ориона. За несколько лет там возникло небольшое

    На снимках 1947 года в этом месте была зафиксирована небольшая группа звездоподобных объектов. К 1954 году некоторые из них уже стали продолговатыми, а еще через пять лет эти объекты распались на отдельные. Так впервые процесс рождения звезд проходил буквально на глазах у астрономов.

    Давайте подробно разберем, как проходит строение и эволюция звезд, с чего начинается и чем заканчивается их бесконечная, по людским меркам, жизнь.

    Традиционно ученые предполагают, что звезды образуются в результате конденсации облаков газо-пылевой среды. Под действием гравитационных сил из образовавшихся облаков формируется непрозрачный газовый шар, плотный по своей структуре. Его внутреннее давление не может уравновесить сжимающие его гравитационные силы. Постепенно шар сжимается настолько, что температура звездных недр повышается, и давление горячего газа внутри шара уравновешивает внешние силы. После этого сжатие прекращается. Длительность этого процесса зависит от массы звезды и обычно составляет от двух до нескольких сотен миллионов лет.

    Строение звезд предполагает очень высокую температуру в их недрах, что способствует беспрерывным термоядерным процессам (водород, который их образует, превращается в гелий). Именно эти процессы являются причиной интенсивного излучения звезд. Время, за которое они расходуют имеющийся запас водорода, определяется их массой. От этого же зависит и длительность излучения.

    Когда запасы водорода истощаются, эволюция звезд подходит к этапу образования Это происходит следующим образом. После прекращения выделения энергии гравитационные силы начинают сжимать ядро. При этом звезда значительно увеличивается в размерах. Светимость также возрастает, поскольку процесс продолжается, но только в тонком слое на границе ядра.

    Этот процесс сопровождается повышением температуры сжимающегося гелиевого ядра и превращением ядер гелия в ядра углерода.

    По прогнозам, наше Солнце может превратиться в красного гиганта через восемь миллиардов лет. Радиус его при этом увеличится в несколько десятков раз, а светимость вырастет в сотни раз по сравнению с нынешними показателями.

    Продолжительность жизни звезды, как уже отмечалось, зависит от ее массы. Объекты с массой, которая меньше солнечной, очень экономно «расходуют» запасы своего поэтому могут светить десятки миллиардов лет.

    Эволюция звезд заканчивается образованием Это происходит с теми из них, чья масса близка к массе Солнца, т.е. не превышает 1,2 от нее.

    Гигантские звезды, как правило, быстро истощают свой запас ядерного горючего. Это сопровождается значительной потерей массы, в частности, за счет сброса внешних оболочек. В результате остается только постепенно остывающая центральная часть, в которой ядерные реакции полностью прекратились. Со временем такие звезды прекращают свое излучение и становятся невидимыми.

    Но иногда нормальная эволюция и строение звезд нарушается. Чаще всего это касается массивных объектов, исчерпавших все виды термоядерного горючего. Тогда они могут преобразовываться в нейтронные, или И чем больше ученые узнают об этих объектах, тем больше возникает новых вопросов.



    Понравилась статья? Поделиться с друзьями: