Волны воды.

Волны на поверхности воды - есть совокупное колебание частиц поверхностной массы воды под действием внешней силы: ветра, прилива, подводного землетрясения, идущего теплохода и др. Линия, на которой лежат все точки вершины одного гребня, называется фронтом волны (Фронт волны только на небольшом расстоянии может быть изображен прямой линией; обычно это плавная кривая.).

Рис. 19.8 . Элементы волны

Рис. 19.9 . Структура обычных волн (вид сверху)

Рис. 19.10 . Параметры волны

Параметры волны (по поперечному срезу):

h - высота (Как видно из рисунка 19.9 (вид волн сверху) высота волны h вдоль ее фронта не одинакова и колеблется от hmin до hmax.); λ - длина; - крутизна; С - скорость движения; - угол между вектором скорости С и направлением на N (север); τ - период, т. е. время, за которое волна проходит свою длину.

К параметрам волны можно отнести и форму ее поперечного среза, например:

Можно выделить тип волн под названием: «толчея», которая получается при встрече волн примерно одинаковой высоты, но идущих с разных направлений. В толчее больших волн управление судами (в т. ч. яхтами) затруднительно.

«Мертвая зыбь » имеет гладкую пологую (гармоническую) форму волн, обычно большой длины (λ) и случается в штиль. Это волнение по инерции, когда ветра уже нет. Мертвая зыбь может быть волнами, вслед за которыми придет шторм.

Волны обладают свойствами:

  • отражаются от препятствий (угол падения равен углу отражения);
  • накладываться друг на друга: отраженная волна на основную или от разных источников;
  • сохранение инерции в течение некоторого времени (силы, вызвавшие волны прекратили действовать, а волны продолжают свой бег);
  • волны, вызванные действием ветра не всегда движутся по направлению ветра. Ветер может изменить свое направление, а волны будут двигаться как прежде (снова инерция);
  • на мелководье, где глубина меньше длины волны, изменяется форма волны, уменьшается ее длина (λ) и увеличивается скорость (с) и высота (h), но период (τ) остается прежним;
  • плавающие водоросли, сильный дождь, мелкий лед, разлитое масло сглаживают волны.

Во время плавания на яхте параметры волны (h и λ) определяют глазомерно. Величину τ можно замерить бросив лист бумаги в воду и пустив секундомер в момент появления листа на вершине гребня. Секундомер останавливают на 11-м появлении листа на вершине гребня и получают время t = 10τ. Зная τ и λ можно вычислить скорость движения волны C=λ/τ.

Другие формулы вычислений дают:

С м/с = 0,65 × τ с 2 (или С узл = 3 × τ с)

С м/с = 1,2√λ м; λ м = 1,56 × τ с 2 ;

(при шторме ).

Для внутренних водоемов, где разбег волн всего несколько километров и преобладает крутая волна пользуются формулой:

λ м = τ с 2 .

Приведенные формулы приблизительны и справедливы для волн средней величины на момент их наблюдения.

Каждый яхтсмен в плавании имеет дело с ветром и волнами. Все эти составляющие влияют на ход яхты и могут не только способствовать ее продвижению, но и оказывать вредное действие. Задача яхтсмена выделить вредные факторы и свести их влияние к минимуму, если их не удается избежать (например обойти) и, в то же время, желательно воспользоваться в полной мере их полезными составляющими. Это имеет место и при плавании на волнении.

  1. При встречном волнении, особенно, когда крутая волна и длина ее 1 ÷ 1,5 длины яхты, очень важно выбирать гладкие участки воды (это возможно! См. структуру волн вид сверху) и не направлять яхту точно против набегающей волны - будет мощный удар, останавливающий яхту. Лучше волне подставлять скулу и дать яхте мягко взойти на гребень, а затем немного увалить. Таким образом, яхта будет идти среди волн зигзагом, выбирая гладкие участки, приводясь и уклоняясь от резких ударов и даже ускоряясь, несколько уваливая при сходе с гребня в ложбину. Путь яхты несколько удлинится, но потери времени на переход будут минимальны.
  2. А. При попутном или боковом волнении управление яхтой доставляет удовольствие. Набегающий гребень (его лучше встречать с бакштага) подхватывает яхту и увлекает своим склоном вперед и ускоряет ее. Возникает ощущение полета, которое можно продлевать, правильно выбирая место для прохода гребня впереди идущей волны, на которой вновь можно получить ускорение и т. д. Вновь яхта будет идти зигзагообразным удлиненным путем, но в этом случае за счет существенного прироста скорости выигрыш будет очень ощутим.
    Б. Если же ход яхты опережает бег волн, следует изменять направление движения яхты так, чтобы она не упиралась в очередную гору воды, но пошла бы наискось скользя вдоль нее и была бы вновь подхвачена волной. Удлинившийся путь компенсируется с избытком возросшей скоростью хода яхты. Во всех случаях при сходе с гребня несколько уваливают, а при восхождении приводятся.

Описанные взаимодействия яхты с волнами быстро приучают рулевого к автоматизму управления. Это удивительно, но факт!

Которых убывает с удалением от поверхности. Волны на поверхности жидкости могут заполнять большие площади, состоять из нескольких волн (цуг) и даже одного гребня или впадины (уединённая волна, солитон). Периоды волн на поверхности жидкости лежат в диапазоне от нескольких суток до долей секунды, длины - от тысяч километров до долей миллиметра, амплитуды - от десятков метров до долей микрометра. Тип волны, фазовая и групповая скорости задаются дисперсионным соотношением ω = ω(k) - функцией частоты ω от волнового вектора k. Наиболее низкочастотные волны на поверхности жидкости - инерционные волны - обусловлены силой Кориолиса; волны промежуточной частоты - гравитационные волны на поверхности жидкости - силой тяжести с ускорением g. Короткие и высокочастотные волны на поверхности жидкости - капиллярные волны - создаются силами поверхностного натяжения. У коротких гравитационных волн на поверхности жидкости (λ < 5Н, где λ = 2π/k - длина волны, Н - глубина водоёма) фазовая скорость больше групповой и растёт с длиной волны (прямая дисперсия). Частицы в них описывают окружности, радиус которых убывает с глубиной. Скорость длинных волн на поверхности жидкости (λ> 10Н) не зависит от λ (волны без дисперсии); частицы в них движутся по эллипсам с убывающей вертикальной осью. Капиллярные волны на поверхности жидкости обладают обратной дисперсией, их групповая скорость больше фазовой. Быстрые капиллярные волны на поверхности жидкости располагаются перед препятствием, медленные гравитационные - позади него. Скорость наиболее медленных волн на поверхности жидкости определяет размер области спокойной воды, отделяющей цуг нестационарных волн от импульсного источника, например брошенного в воду камня. Вблизи поверхности вязкой жидкости волны образуют периодический пограничный слой толщиной δ = √2 ν/ω, где V - кинематическая вязкость. Волны на поверхности жидкости и сопутствующие пограничные слои переносят энергию и вещество.

Картину волн на поверхности жидкости усложняет интерференция волн (наложение волн от различных источников), рефлексия (отражение от неровностей дна и берегов), рефракция (искривление и поворот волновых фронтов на неровном дне), дифракция (проникновение в область геометрической тени), а также нелинейное взаимодействие с волнами на поверхности и внутри жидкости, пограничными слоями, течениями, вихрями и ветром. С ростом амплитуды различия в свойствах волны и пограничного слоя стираются, формируется единая волновихревая система («кипящая стена воды», «волна-убийца»), обладающая большой разрушительной силой. Волны на поверхности жидкости распадаются, если ускорение в них превосходит g и амплитуда А >λ/2π.

Волны на поверхности жидкости в океанах образуются под действием притяжения Луны и Солнца (наиболее выражены приливные волны с периодами, кратными 12 ч 25 мин - половине лунных суток), землетрясений и оползней, меняющих форму дна и берегов (цунами с периодом 10-30 мин), из-за воздействия атмосферы, обтекания препятствий. Ветровые волны с периодом 2-16 с распространяются со скоростью 3-25 м/с на большие расстояния, образуя регулярную зыбь и прибой. Амплитуда цунами, бегущих в океане со скоростью около 700 км/ч, возрастает при подходе к берегу, они смывают города и опустошают прибрежные зоны.

Волны на поверхности жидкости влияют на обмен веществом, энергией и импульсом между атмосферой и гидросферой, способствуют насыщению воды кислородом. Возобновляемая энергия волн на поверхности жидкости используется приливными электростанциями и установками, непосредственно преобразующими её в электрическую.

Смотри также Волны в океане.

Лит.: Уизем Дж. Линейные и нелинейные волны. М., 1977.

Волны, образующиеся на свободной поверхности воды, приводят в движение соприкасающийся с ними воздух. В большинстве случаев массой этого воздуха можно пренебречь по сравнению с массой жидкости. Тогда давление на свободной поверхности жидкости будет равно атмосферному давлению Наблюдения показывают, что при простейшем волновом движении отдельные частицы свободной поверхности воды описывают траектории, приближенно совпадающие с окружностью. В системе отсчета, движущейся вместе с волнами со скоростью их распространения, волновое движение является, очевидно, установившимся движением (рис. 80). Пусть скорость распространения волн равна с, радиус окружности, описываемой частицей воды, расположенной на свободной поверхности, равен а период обращения этой частицы по своей траектории равен Тогда в указанной системе отсчета скорость течения на гребнях волн будет равна

а во впадинах волн

Так как разность высот между наивысшим и наинизшим положениями точек свободной поверхности равна то, применяя уравнение Бернулли к линии тока, расположенной на свободной поверхности, мы получим:

или, после подстановки вместо и их значений,

откуда следует, что

Радиус в эту формулу не входит, следовательно, скорость распространения волн не зависит от высоты волн. При распростраении волн гребень волны продвигается за время на расстояние называемое длиной волны, следовательно,

Исключая из равенств (60) и (61) период мы получим:

Таким образом, для волн на поверхности воды скорость их распространения, в отличие от звуковых волн, сильно зависит от длины волны. Длинные волны распространяются быстрее, чем короткие. Волны с разной длиной могут налагаться друг на друга без заметного взаимного возмущения. При этом короткие волны как бы приподнимаются длинными волнами, но затем длинные волны уходят вперед, а короткие остаются позади них. Линии тока в системе отсчета, неподвижной относительно невозмущенной воды, показаны на рис. 81. Из расположения линий тока видно, что скорость движения воды очень быстро убывает с увеличением глубины, а именно, пропорционально уменьшению величины следовательно, на глубине, равной длине волны, скорость составляет только скорости на свободной поверхности.

Рис. 81. Линии тока волнового движения

Точная теория показывает, что формула (62) справедлива только для низких волн, причем независимо от их высоты. Для высоких волн скорость с в действительности несколько больше того значения, которое дает формула (62). Кроме того, при высоких волнах траектории частиц воды, расположенных на свободной поверхности, получаются незамкнутыми: вода на гребне волны уходит вперед на большее расстояние, чем на то, на которое она возвращается назад во впадине волны (см. правую часть рис. 81). Следовательно, при высоких волнах происходит перенос воды вперед.

Для волн с небольшой длиной важным фактором является, кроме силы тяжести, также поверхностное натяжение. Оно стремится сгладить волновую поверхность, и поэтому скорость распространения волн увеличивается. Теория показывает, что в этом случае скорость распространения волн равна

где С есть капиллярная постоянная. Для длинных волн преобладающую роль играет первый член под знаком корня, а для коротких волн, наоборот, второй член. Для длины волны

скорость распространения с имеет минимальное значение, равное

Для воды дин/см, следовательно,

Волны, длина которых больше называются гравитационными, а волны, длина которых меньше капиллярными.

От скорости перемещения гребней волн, называемой фазовой скоростью (выше мы ее называли скоростью распространения волн и обозначали через с), следует отличать скорость распространения группы

волн, называемую групповой скоростью и обозначаемую через с. Проще всего разъяснить смысл этого понятия на примере движения, возникающего в результате наложения двух волн, имеющих равные амплитуды, но немного отличающихся своей длиной. Пусть мы имеем синусоидальную волну

где А есть амплитуда, время, а некоторые коэффициенты. При увеличении на у или на у синус принимает прежнее значение, следовательно, величина

есть длина волны, а величина

есть период колебаний. Если

т. е. если

то аргумент синуса не зависит от времени, поэтому не зависит от времени и ордината у. Это означает, что вся волна, не изменяя своей формы, перемещается вправо со скоростью

Наложим на эту волну вторую волну

т. е. волну с той же амплитудой А, но с несколько иными значениями Результирующим движением будет

В тех точках оси х, в которых фазы обоих колебаний совпадают, амплитуда равна в тех же точках, в которых фазы обоих колебаний

противоположны, амплитуда равна нулю. Такое явление называется биением. Применив известную формулу

мы получим:

В этом равенстве член

представляет собой волну, для которой коэффициенты при равны средним значениям от и соответственно от Множитель же

который при малых значениях разностей изменяется медленно, можно рассматривать как переменную амплитуду (рис. 82).

Рис. 82. Биение

Группа волн кончается в той точке, где косинус делается равным нулю. Скорость перемещения этой точки, называемая групповой скоростью с, на основании соображений, аналогичных предыдущим, равна

Для длинных групп, т.е. для медленных биений, с достаточной точностью можно принять, что

Для волн, возникающих под действием силы тяжести, из формулы (60) мы имеем:

Но, согласно равенству (65),

следовательно,

С другой стороны, подставив в формулу (62) значение из равенства (64), мы получим:

Отсюда, диференцируя по и имея в виду равенство (67), мы найдем:

Таким образом, группы волн распространяются со скоростью с, равной половине фазовой скорости, иными словами, гребни в группе волн перемещаются со скоростью, в два раза большей, чем сама группа волн; на заднем конце группы все время возникают новые волны, а на переднем конце группы они исчезают. Это явление очень легко наблюдать на волнах, вызванных падением камня в неподвижную воду.

Все сказанное относится не только к волнам на поверхности воды, но и к любым другим волнам, фазовая скорость которых зависит от длины волны.

Другим видом групп волн являются волны, возникающие на поверхности воды при движении корабля. Картину волн, очень похожую на корабельные волны, легко получить, если на поверхности покоящейся глубокой воды заставить двигаться с постоянной скоростью точечный очаг возмущения давления. Возникающее при этом движение может быть исследовано математически. Согласно вычислениям В. Томсона (lord Kelvin), Экмана (Ekman) и других, получается система волн, изображенная на рис. 83, на котором наклонными линиями обозначены гребни волн. Эта система волн перемещается вместе с очагом возмущения. Длина поперечных волн на основании формулы (62) равна

где с есть скорость перемещения очага возмущения. При движении корабля образуются две системы таких волн - одна около носа, другая около кормы корабля, причем волны обеих систем интерферируют друг с другом.

Рис. 83. Система волн, образующихся при равномерном движении на поверхности воды очага возмущения давления

Групповая скорость капиллярных волн, как нетрудно показать путем расчета, аналогичного сделанному для гравитационных волн, больше фазовой скорости, а именно, в предельном случае очень малых волн, в 1,5 раза. Следовательно, если очаг возмущения движется с постоянной скоростью, то группы волн его опережают. Около лески удочки, опущенной в реку, скорость течения которой больше 23,3 см/сек, образуются вверх по течению капиллярные волны, а вниз по течению - гравитационные волны, причем последние имеют приблизительно такую же форму, как на рис. 83, а первые расходятся вверх по течению в виде дуг окружностей. При скоростях движения очага возмущения, меньших 23,3 см/сек, волны не образуются.

На поверхности соприкосновения двух жидкостей различной плотности, расположенных одна над другой, также могут возникать волны. Если обе жидкости неподвижны и плотности их равны то теоретический расчет дает для фазовой скорости волн величину

Если верхняя жидкость течет со скоростью относительно нижней, то теория показывает, что возникающие волны устойчивы только в том случае, если их длина достаточно велика. Короткие же волны, подобно тому, как это было показано в § 7 для движения двух потоков жидкости вдоль поверхности раздела, неустойчивы, что приводит к перемешиванию обеих жидкостей в промежуточной зоне; это перемешивание восстанавливает устойчивость течения. При увеличении скорости граница между неустойчивостью и устойчивостью перемещается в сторону волн с большей длиной. Волны такого рода могут возникать также в атмосфере на границе двух слоев воздуха разной плотности, движущихся относительно друг друга; иногда эти волны делаются видимыми благодаря образованию так называемых волнистых облаков.

При движении воздуха над поверхностью воды также образуются волны. Однако теория таких волн, основанная на предположении отсутствия трения, приводит к результатам, противоречащим

действительности. Так, например, вычисления В. Томсона показали, что минимальная скорость ветра, необходимая для образования на поверхности воды волн, должна составлять круглым числом причем возникают волны, обладающие минимальной скоростью распространения см/сек и длиной волны см (при большей скорости ветра получаются, конечно, волны с большей длиной). Между тем в действительности для образования волн достаточно ветра со скоростью Согласно исследованию Джеффри это объясняется тем, что вследствие трения распределение давления на поверхности волны делается несимметричным, и поэтому ветер, если его скорость больше фазовой скорости волн, совершает на гребне каждой волны работу. Мотцфельд, измерив распределение давления на поверхности моделей водяных волн, нашел, что сопротивление, которое воздух оказывает движению волн, пропорционально полуторной степени наклона поверхности волны в точке перегиба относительно горизонта, а также квадрату разности между скоростью ветра и фазовой скоростью волн. Далее, Мотцфельд путем расчета нашел, что наклон поверхности волны в точке перегиба, зависящий от фазовой скорости с, получается наибольшим при

Этой скорости с соответствует, на основании формулы (62), волна длиной

Если принять во внимание поверхностное натяжение, которое Мотцфельд не учитывал, то расчет показывает, что для возникновения легкого волнения на поверхности воды достаточно, в полном соответствии с наблюдениями, ветра со скоростью, немного превышающей 23,3 см/сек.

Формулы, выведенные выше, пригодны только для волн на глубокой воде. Они еще достаточно точны, если глубина воды равна половине длины волны. При меньшей глубине частицы воды на поверхности волны описывают не круговые траектории, а эллиптические, и зависимость между длиной и скоростью распространения волн получается более сложной, чем для волн на глубокой воде. Однако для волн на

очень мелкой воде, а также для очень длинных волн на средней воде только что указанная зависимость принимает опять более простой вид. В обоих последних случаях вертикальные перемещения частиц воды на свободной поверхности весьма незначительны по сравнению с горизонтальными перемещениями. Поэтому можно опять считать, что волны имеют приблизительно синусоидальную форму. Так как (траектории частиц представляют собой очень сплющенные эллипсы, то влиянием вертикального ускорения на распределение давления можно пренебречь. Тогда на каждой вертикали давление будет изменяться по статическому закону, и разности высот жидкости будут обусловливать практически только горизонтальные ускорения. Мы ограничимся здесь вычислениями лишь для случая движения «вала» воды, изображенного на рис. 84. Эти вычисления очень простые и в дальнейшем будут нами использованы для исследования распространения возмущения давления в сжимаемой среде (см. § 2 гл. IV).

Рис. 84. Вал на поверхности воды

Пусть на поверхности воды над плоским дном распространяется со скоростью с справа налево вал шириной повышающий уровень воды от до Предположим, что до прихода вала вода находилась в покое. Скорость ее движения после повышения уровня обозначим через Эта скорость, отнюдь не совпадающая со скоростью с распространения вала, необходима для того, чтобы вызвать боковое перемещение объема воды в переходной зоне шириной вправо и тем самым поднять уровень воды с высоты до высоты Примем для простоты, что наклон вала по всей его ширине постоянен, следовательно, он равен Тогда, при условии, что скорость достаточно мала, чтобы ею можно было пренебречь по сравнению со скоростью с распространения вала, вертикальная скорость подъема воды в области вала будет равна должна быть мала также разность высот следовательно, это уравнение применимо только к низким валам, и поэтому только что упомянутое условие вполне оправдано.

К кинематическому соотношению (72) следует присоединить динамическое соотношение, которое легко вывести следующим образом. Объем воды шириной в области вала находится в ускоренном движении, так как частицы, составляющие этот объем, начинают свое движение на правом краю со скоростью нуль, а на левом краю имеют скорости Возьмем какую-нибудь частицу воды в области вала. Время, в течение которого над этой частицей проходит вал, очевидно, равно

поэтому ускорение частицы будет

Объем воды в области вала, если его толщину в направлении, перпендикулярном к плоскости рисунка, принять равной единице, имеет массу где Кроме того, каждый последующий вал распространяется не в неподвижной воде, а в воде, уже движущейся вправо со скоростью Это приводит к тому, что последующие валы догоняют предыдущие, в результате чего возникает крутой вал конечной высоты.

Исследование распространения вала конечной высоты можно выполнить при помощи теоремы о количестве движения совершенно таким же образом, как это было сделано в § 13 при рассмотрении внезапного расширения потока. Для того чтобы движение воды при распространении вала можно было рассматривать как установившееся, расчет следует вести в системе отсчета, движущейся вместе с валом. Скорость распространения вала конечной высоты больше чем

Попробуйте при случае подсчитать, сколько цветов в в радуге. Эту задачу выполнить невозможно. Между полосами красной и оранжевой, синей и голубой, как и между любыми соседними полосами, нет резких границ: между ними имеется много переходных тонов. Не все оттенки цветов способен различать глаз. Часто трудно и определить: то ли цвет «ближе к синему», то ли «ближе к голубому».

Нельзя ли в таком случае для каждого луча найти характери­стику более точную, чем его цвет? Физики нашли такую харак­теристику - и очень точную.

Это произошло благо­даря тому, что были откры­ты волновые свойства света.

Что такое волны и ка­ковы их свойства?

Ради наглядности мы познакомимся сначала с вол­нами на поверхности воды.

Каждый знает, что во­дяные волны бывают раз­ные. По пруду проносится едва заметная зыбь, слегка качающая пробку рыболова; на морских просторах огромные во­дяные валы раскачивают океанские пароходы. Чем же отличают­ся волны друг от друга? Чтобы ответить на этот во­прос, рассмотрим, как воз­никают водяные волны.

В качестве возбудителя волн на воде мы возьмём прибор, показанный на рис. 3. Когда моторчик А вращает эксцентрик Б, стерженёк В ритмично движется вверх и вниз, погружаясь в воду на разную глубину. От него разбегаются волны в виде кругов с одним центром (рис. 4). Они представляют собой ряд чередующихся гребней и впадин.

Расстояние между со­седними гребнями или впади­нами называется длиной волны и обычно обозначается грече­ской буквой X (лямбда). Увеличим число оборотов моторчика, а стало быть и частоту колебаний стерженька, вдвое. Тогда число волн, появляющихся за то же время, будет вдвое больше. Но длина волн будет теперь вдвое меньше. Число волн, образующихся в одну секунду, называется частотой волн. Она обычно обозначается греческой буквой V (ню).

Пусть на воде плавает пробка. Под влиянием бегущей волны она будет совершать колебания. Подошедший к пробке гребень поднимет её вверх, а последующая впадина опустит вниз. За секунду пробку поднимет столько гребней (и опустит столько впадин), сколько за это время образуется волн. А это число и есть частота волны V. Значит, пробка будет колебаться с частотой V, Так, обнаруживая действие волн, мы можем установить их частоту в любом месте их распро­странения.

Ради простоты мы будем считать, что волны не затухают. Частота и длина незатухающих волн связаны друг с другом простым законом. За секунду образуется V волн. Все эти волны уложатся на некотором отрезке. Первая волна, обра­зовавшаяся в начале секунды, дойдёт до конца этого отрезка; она отстоит от источника на расстоянии, равном длине волны, умноженной на частоту. Но расстояние, пройденное волной за секунду, есть скорость волны V. Итак, = Если известна длина волны и скорость распространения волн, то

Можно определить частоту V, а именно: V - у.

Частота и длина волн являются их существенными харак­теристиками; по этим характеристикам одни волны отличают от других.

Кроме частоты (или длины волны), вблны отличаются ещё и высотой гребней (или глубиной впадин). Высота волны измеряется от горизонтального уровня покоящейся поверхно­сти воды. Она называется амплитудой.

Эволюция света Современный мир светится яркими красками даже с космоса: космические станции и экипаж на борту могут лицезреть удивительную картину ночью: светящаяся паутина из ярких городских огней. Это – продукт …

Н Аш рассказ подходит к концу. Мы узнали теперь, какое мощное теоретическое и практическое оружие получил человек, изучая законы возникновения и распространения света, и как сложен был путь познания этих …

Современная промышленность предъявляет исключительно высокие требования к качеству металлов. Современные маши­ны и инструменты работают в самых разнообразных режимах температур, давлений, скоростей, электрических и магнит­ных полей. Возьмём, к примеру, режущий инструмент. …

Возникающие и распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей. В. на п. ж. образуются под влиянием внешнего воздействия, в результате которого поверхность жидкости выводится из равновесного состояния (например, при падении камня). При этом возникают силы, восстанавливающие равновесие: силы поверхностного натяжения и тяжести. В зависимости от природы восстанавливающих сил В. на п. ж. подразделяются на: капиллярные волны, если преобладают силы поверхностного натяжения, и гравитационные, если преобладают силы тяжести. В случае, когда совместно действуют силы тяжести и силы поверхностного натяжения, волны называются гравитационно-капиллярными. Влияние сил поверхностного натяжения наиболее существенно при малых длинах волн, сил тяжести - при больших.

Скорость с распространения В. на п. ж. зависит от длины волны λ. При возрастании длины волны скорость распространения гравитационно-капиллярных волн сначала убывает до некоторого минимального значения

а затем вновь возрастает (σ - поверхностное натяжение, g - ускорение силы тяжести, ρ - плотность жидкости). Значению c 1 соответствует длина волны

При λ > λ 1 скорость распространения зависит преимущественно от сил тяжести, а при λ см.

Причины возникновения гравитационных волн: притяжение жидкости Солнцем и Луной (см. Приливы и отливы), движение тел вблизи или по поверхности воды (корабельные волны), действие на поверхность жидкости системы импульсивных давлений (ветровые волны, начальное отклонение некоторого участка поверхности от равновесного положения, например местное возвышение уровня при подводном взрыве). Наиболее распространены в природе ветровые волны (см. также Волны морские).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Волны на поверхности жидкости" в других словарях:

    Волны, возникающие и распространяющиеся по свободной поверхности жидкости или по поверхности раздела двух несмешивающихся жидкостей. В. на п. ж. образуются под влиянием внеш. воздействия, в результате к рого поверхность жидкости выводится из… … Физическая энциклопедия

    Механика сплошных сред … Википедия

    Вол новые движения границы жидкости (напр., поверхности океана), возникающие при нарушении равновесия жидкости (иод действием ветра, проходящего судна, брошенного камня) и стремления сил тяжести и сил поверхностного натяжения жидкости… … Естествознание. Энциклопедический словарь

    Волны на поверхности моря или океана. Благодаря большой подвижности частицы воды под действием разного рода сил легко выходят из состояния равновесия и совершают колебательные движения. Причинами, вызывающими появление волн, являются… … Большая советская энциклопедия

    Изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Наиболее важные и часто встречающиеся виды В. упругие волны, волны на поверхности жидкости и электромагнитные волны. Частными случаями упругих В.… … Физическая энциклопедия

    Волны - Волны: а одиночная волна; б цуг волн; в бесконечная синусоидальная волна; l длина волны. ВОЛНЫ, изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Основное свойство всех волн, независимо от их… … Иллюстрированный энциклопедический словарь

    Возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны, напр., звуковые, волны на поверхности жидкости и электромагнитные волны. Несмотря на… … Большой Энциклопедический словарь

    Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

    Волна изменение состояния среды (возмущение), распространяющееся в этой среде и переносящее с собой энергию. Другими словами: «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой… … Википедия

    Возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны, например звуковые, волны на поверхности жидкости и электромагнитные волны. Несмотря на… … Энциклопедический словарь

Книги

  • Динамика многофазных систем. Учебное пособие , Глазков Василий Валентинович. Курс "Динамика многофазных систем" является продолжением основного курса тепло- и массообмена. В рамках курса формулируется математическое описание и модели двухфазных систем. Рассматриваются…


Понравилась статья? Поделиться с друзьями: