Тип круглые черви.

С тех пор как эволюция подарила появившейся жизни на Земле нервную систему диффузного типа, прошло еще много этапов развития, ставших поворотными пунктами в деятельности живых организмов. Эти этапы друг от друга отличаются по видам и количеству нейрональных образований, по синапсам, по признакам функциональной специализации, по группировкам нейронов, по общности их функций. Основных этапов четыре - так образовывались нервная система диффузного типа, стволового, узлового и трубчатого.

Характеристика

Из наиболее древних - нервная система диффузного типа. Она имеется у таких живых организмов, как гидра (кишечнополостные - медузы, например). Характеризовать такой тип нервной системы можно множественностью связей в соседних элементах, и это позволяет любому возбуждению довольно свободно распространяться во все стороны по нервной сети. Нервная система диффузного типа к тому же обеспечивает взаимозаменяемость, что дает значительно большую надежность функциям, но все эти реакции бывают неточного, расплывчатого характера.

Нервная система узловая типична для ракообразных, моллюсков, червей. Такой тип характерен тем, что возбуждение может проходить только четко и жестко определенными путями, поскольку у них иначе организованы связи нервных клеток. Это гораздо более ранимая Если повреждается один узел, нарушаются функции организма полностью. Однако узловой тип нервной системы точнее и быстрее по своим качествам. Если диффузный тип нервной системы характерен для кишечнополостных, то трубчатой нервной системой обладают хордовые, где включены черты и узлового, и диффузного типа. Высшие животные взяли от эволюции все самое лучшее - и надежность, и точность, и локальность, и быстроту реакций.

Как это было

Диффузный тип нервной системы характерен для начальных этапов развития нашего мира, когда взаимодействие живых существ - простейших организмов - осуществлялось в водной среде первобытного океана. Простейшие выделяли некоторые химические вещества, которые растворялись в воде, и таким образом первые представители жизни на планете получали продукты обмена веществ вместе с жидкостью.

Древнейшая форма такого взаимодействия происходила между отдельными клетками посредством химических реакций. Это продукты обмена веществ - метаболиты, они появляются, когда распадаются белки, углекислота и тому подобное, и являются гуморальной передачей влияний, гуморальным механизмом корреляции, то есть связями между разными органами. Характеристикой диффузного типа нервной системы отчасти может служить и гуморальная связь.

Особенности

Диффузный тип нервной системы характерен для организмов, у которых уже известно, куда именно направлено то или иное химическое вещество, поступившее из жидкости. Ранее распространялось оно медленно, действало в малых количествах и либо быстро разрушалось, либо еще быстрее выводилось из организма. Здесь нужно отметить, что гуморальные связи были одни и те же и для растений, и для животных. Когда у многоклеточных появилась нервная система диффузного например) на определенной стадии развития живого мира, это уже была новая форма регуляций и связей, качественно отличающая мир растений от мира животных.

И далее во времени - чем выше становилось развитие организма животного, тем более взаимодействовали органы (рефлекторное взаимодействие). Сначала живые организмы имеют нервную систему диффузного типа, а затем в процессе эволюции уже обладают регулирующей гуморальные связи нервной системой. Нервная связь, в отличие от гуморальной, всегда точно направлена не только к нужному органу, но и к определенной группе клеток, связи происходят во многие сотни раз быстрее, чем первые живые организмы распространяли химические вещества. Гуморальная связь с переходом к нервной не исчезла, она подчинилась, и потому возникли нервно-гуморальные связи.

Следующий этап

От диффузного типа нервной системы (существует у кишечнополостных) живые существа ушли, получив специальные железы, органы, вырабатывающие гормоны, которые образуются из пищевых веществ, поступающих в организм. Основными функциями нервной системы являются и регуляция деятельности всех органов друг с другом, и взаимодействие всего организма в целом с внешней средой.

Любое внешнее воздействие окружающая среда оказывает в первую очередь на органы чувств (рецепторы), осуществляясь посредством изменений, которые происходят и во внешней среде, и в нервной системе.

Время шло, нервная система развивалась, и с течением времени сформировался высший ее отдел - головной мозг, большие полушария. Они и стали распоряжаться и распределять всю деятельность организма.

Плоские черви

Нервную систему образует нервная ткань, состоящая из невероятного количества нейронов. Это такие клетки с отростками, считывающие и химическую, и электрическую информацию, то есть сигналы. Например, нервная система плоских червей диффузному типу уже не принадлежит, нервной системы узловой и стволовый.

Скопления нервных клеток у них составляют парные головные узлы со стволами и многочисленными ответвлениями, которые тянутся во все органы и системы. Значит, не диффузного типа нервная система - у планарии (это и есть плоский червь, хищник, который поедает маленьких рачков, улиток). У низших форм плоских червей еще встречается нервная система сетевидная, однако в целом к диффузному типу они уже не относятся.

Кольчатые черви

Также не диффузного типа нервную систему имеют кольчатые черви, она у них гораздо лучше организована: нервного сплетения, которое можно наблюдать у моллюсков, у них нет. Они обладают центральным нервным аппаратом, в составе которого мозг (надглоточный ганглий), окологлоточные коннективы и пара нервных стволов, которые расположились под кишкой и соединились поперечными комиссурами.

У большей части кольчатых червей полностью ганглионизированы нервные стволы, когда в каждом сегменте есть пара ганглиев, иннервирующая собственный сегмент тела. Примитивные кольчатые черви живут с широко расставленными в подбрюшии нервными стволами, соединенными длинными комиссурами. Можно назвать такое строение нервной системы лестничной. Высокоорганизованные представители имеют укорочение комиссур и сближение стволов практически до слияния. Это еще называют брюшной нервной цепью. Нервную систему диффузного типа имеют гораздо более простые живые организмы.

Книдарии

Самая простая диффузная нервная система у стрекающих (книдарий) - плексус, в виде сетки, которая состоит из мультиполярных или биполярных нейронов. Гидроидные имеют ее поверх мезоглеи, в эктодерме, а коралловые полипы и сцифоидные медузы - в энтодерме.

Особенностью такой системы является то, что активность может распространяться в абсолютно любом направлении и из абсолютно любой стимулированной точки. Такой тип нервной системы считается примитивным, однако питается, плавает да и в остальном действует такой организм не очень-то и просто. Стоит посмотреть, как перемещаются актинии на раковины моллюсков.

Медузы, актинии и другие

Помимо нервной сети медузы и актинии имеют длинных нейронов, которые образуют цепочки, поэтому обладают способностью быстрее передавать импульсы без затухания на большие расстояния. Именно это и позволяет им осуществлять хорошую общую реакцию на всевозможные стимулы. Другие группы беспозвоночных могут иметь и нервные сети, и нервные стволы, отмеченные на самых разных участках тела: под кожей, в кишечнике, в глотке, у моллюсков - в ноге, у иглокожих - в лучах.

Однако уже у стрекающих существует тенденция, при которой нейроны концентрируются у ротового диска или в подошве, как у полипов. По краю зонтика у медуз образованы нервные окончания, а в некоторых местах - сгущения на кольце - нервные клетки в больших скоплениях (ганглии). Краевые ганглии на зонтиках медуз - первый шаг к появлению центрального отдела нервной системы.

Рефлекс

Основная форма нервной деятельности - рефлекс, реакция организма на сигнал об изменении внешней или внутренней среды, которая осуществляется с участием нервной системы, отвечая на раздражение рецепторов. Любое раздражение с возбуждением рецепторов пробегает по центростремительным волокнам к центральной нервной системе, далее посредством вставочного нейрона - обратно на периферию уже по центробежным волокнам, точно попадая к тому или иному органу, деятельность которого изменена.

Такой путь - через центр к рабочему органу - называют рефлекторной дугой, и образован он тремя нейронами. Сначала срабатывает чувствительный, затем - вставочный, а напоследок - двигательный. Рефлекс - довольно сложный акт, осуществить его без участия большого числа нейронов не получится. Но в результате такого взаимодействия может осуществиться ответная реакция, организм ответит на раздражение. Медуза, например, обожжет, иногда угостит смертельным ядом.

Первый этап развития нервной системы

У простейших нервная система отсутствует, однако даже некоторые инфузории имеют фибриллярный внутриклеточный возбудимый аппарат. В процессе развития многоклеточные сформировали специальную ткань, которая была способна воспроизводить активные реакции, то есть возбуждаться. Сетевидная система (диффузная) первыми своими подопечными выбрала гидроидные полипы. Именно они вооружились диффузно (сетевидно) расположив их по всему телу.

Такая нервная система очень быстро проводит сигнал возбуждения из той точки, где получено раздражение, и этот сигнал несется во всех направлениях. Это придает нервной системе интегративные (свойственные всему организму, объединяющие) качества, хотя ни один фрагмент тела, взятый отдельно, такой особенностью не обладает.

Централизация

Централизация в незначительной степени отмечается уже в диффузной нервной системе. Гидры приобретают нервные уплотнения в областях орального полюса и подошвы, например. Это усложнение происходило параллельно развитию органов движения, а выражалось в обособлении нейронов, когда они из диффузной сети уходили в глубину тела и образовывали там скопления.

Например, у кишечнополостных, свободно живущих (медуз) нейроны скапливаются в ганглии, таким образом формируя нервную систему диффузно-узлового типа. Такой тип возник в первую очередь за счет того, что развивались специальные рецепторы прямо на поверхности тела, которые были способны реагировать избирательно на световые, химические или механические воздействия.

Нейроглия

Живые организмы вместе с вышеперечисленным в процессе эволюции увеличивают и число нейронов, и разнообразие их. Таким образом сформировалась нейроглия. Появились нейроны и двухполюсные, имеющие аксоны и дендриты. Постепенно организмы получают возможность проводить возбуждение направленно. Нервные структуры тоже дифференцируются, передаются сигналы клеткам, которые управляют ответными реакциями.

Так целенаправленно шло развитие нервной системы: одни клетки специализировались на рецепции, другие - на проведении сигнала, а третьи - на ответном сокращении. Дальше последовало эволюционное усложнение, централизация, выработка узловой системы. Появляются кольчатые черви, членистоногие, моллюски. Теперь нейроны сконцентрированы в которые нервными волокнами крепко связаны между собой с рецепторами и органами исполнения (железами, мышцами).

Дифференциация

Далее происходит разделение деятельности организма на составляющие: пищеварительная, половая, кровеносная и остальные системы обособились, но взаимодействие между ними необходимо, и эту функцию взяла на себя нервная система. Центральные нервные образования значительно усложнились, возникло множество новых, теперь уже в полной зависимости друг от друга.

Околощитовые нервы и ганглии, которые контролируют питание и движение, развились в рецепторы у филогенически высших форм, и они теперь стали воспринимать запах, звук, свет, появились органы чувств. Поскольку главные рецепторы расположились в головном конце, ганглии в этой части туловища развились сильнее, подчинив, наконец, деятельность всех остальных. Именно тогда образовалсчя головной мозг. Например, у кольчатых червей и членистоногих нервная цепочка развита уже очень хорошо.

Трубчатый тип нервной системы

У позвоночных животных в основе формирования нервной системы лежит нервная трубка, расположенная с дорсальной стороны эмбриона. Передний конец трубки обычно расширен и образует головной мозг. Задняя цилиндрическая часть есть ни что иное, как спинной мозг. Существует гипотеза, согласно которой у предков хордовых животных имелась продольная дорсальная полоса первичного чувствующего эпителия. Затем в ходе эволюционного развития она стала погружаться в эктодерму, сформировав сначала открытый желоб, а потом образовав замкнутую нервную трубку. Эту гипотезу подтверждают картины раннего эмбриогенеза позвоночных животных (рис.20).


В ходе эволюционного развития позвоночных трубчатая нервная система претерпевает ряд изменений.

Во-первых, все дальнейшее развитие идет по пути цефализации – преимущественного развития головного мозга. Если у примитивно устроенного хордового животного – ланцетника – головной конец практически не развит, то уже у круглоротых имеется заметное утолщение нервной трубки в головном конце. Этот довольно примитивный головной мозг уже состоит из трех отделов: переднего, среднего и заднего. Передний отдел связан с развитием обоняния, средний – зрения, а задний с механорецепцией. У рыб выделяется также промежуточный мозг, достаточное развитие получает мозжечок. У амфибий значительно увеличивается передний мозг за счет развития полушарий, хорошо развит средний мозг, который у данной группы животных является высшим зрительным центром.

Во-вторых, у высокоорганизованных позвоночных возникает новый отдел головного мозга – кора больших полушарий (плащ конечного мозга). Эта структура все больше подчиняет себе рефлексы низших отделов мозга, осуществляет за ними контроль. Данный этап получает название кортикализации (от лат. cortex – кора). У рептилий появляется кора головного мозга. Развитие головного мозга млекопитающих характеризуется усилением развития новой коры, появляется Варолиев мост, совершенствуются структуры среднего и продолговатого мозга (рис. 21). У высших млекопитающих ассоциативные зоны коры являются высшим центром интегративной деятельности в ЦНС.

Таким образом, увеличение объема и усложнение структуры отделов головного мозга позвоночных тесно связаны с развитием сенсорных систем и интегративной деятельности. Постепенно, в зависимости от притока сенсорной информации, в существующих отделах мозга появляются филогенетически новые образования, которые берут под свой контроль все большее количества функций.

Следует, однако, отметить, что и у позвоночных, в том числе и у высших, сохраняются черты предшествующих эволюционных типов нервных систем: ганглионарной и диффузной.

Так в периферической нервной системе (соматической и вегетативной) чувствительные нейроны образуют ганглии (спинномозговые, симпатические и парасимпатические). При помощи ганглионарых структур в человеческом организме обеспечивается работа эволюционно древних (по сравнению с психикой) структур. Это, прежде всего, восприятие (чувствительность, рецепция) и автономная деятельность внутренних органов.

Также в нашем организме сохранились и признаки диффузной нервной системы. Она образует третий отдел вегетативной нервной системы – метасимпатическую нервную систему (напомним, первые два отдела: симпатическая и парасимпатическая). Данный отдел обеспечивает автономную работу полых внутренних органов. Нейроны метасимпатической нервной системы образуют микроганглионарные скопления внутри стенок органов, координируя их деятельность (например, перистальтические движения кишечника, обеспечивающие продвижение пищи). Процессы, протекающие в диффузной нервной системе, могут видоизменяться под влиянием симпатической и парасимпатической нервных систем.

Типы нервных систем

Существует несколько типов организации нервной системы, представленные у различных систематических групп животных.

    Диффузная нервная система - представлена у кишечнополостных. Нервные клетки образуют диффузное нервное сплетение в эктодерме по всему телу животного, и при сильном раздражении одной части сплетения возникает генерализованный ответ - реагирует все тело.

    Стволовая нервная система (ортогон)- некоторые нервные клетки собираются в нервные стволы, наряду с которыми сохраняется и диффузное подкожное сплетение. Такой тип нервной системы представлен у плоских червей и нематод (у последних диффузное сплетение сильно редуцировано), а также многих других групп первичноротых - например, гастротрих и головохоботных.

    Узловая нервная система, или сложная ганглионарная система - представлена у аннелид, членистоногих, моллюсков и других групп беспозвоночных. Большая часть клеток центральной нервной системы собраны в нервные узлы - ганглии. У многих животных клетки в них специализированы и обслуживают отдельные органы. У некоторых моллюсков (например, головоногих) и членистоногих возникает сложное объединение специализированных ганглиев с развитыми связями между ними - единый головной мозг или головогрудная нервная масса (у пауков). У насекомых особенно сложное строение имеют некоторые отделы протоцеребрума («грибовидные тела»).

    Трубчатая нервная система (нервная трубка) характерна для хордовых.

Нервная система в виде диффузной синцитиальной ткани впервые появляется у многоклеточных. Она представляет собой сеть нервных клеток, так называемую ретикулярную ткань. Морфологическая однородность, своеобразная «замкнутость» ретикулярной ткани не позволяют дифференцировать внешние воздействия. На действие всех внешних агентов живое существо отвечает однотипными реакциями.

С появлением ганглионарной (узловой) нервной системы (черви, моллюски, иглокожие) происходит специализация ответных реакций. Становится возможной передача возбуждения от одних узлов к другим. Структура и функция нервной системы на этом этапе эволюции находятся в прямой связи с рецепторными образованиями. Чувствительные клетки нервной системы в процессе эволюции совершенствовались параллельно с развитием аппаратов рецепции. Этому в значительной мере способствовала морфологическая близость аппаратов рецепции и чувствительных нервных клеток.

Дальнейшее совершенствование функций нервной системы, наблюдающееся у хордовых, связано с централизацией нервных узлов. В структуре нервной системы позвоночных животных развиваются специализированные синапсы, а вместе с ними и множественные связи между нервными клетками. Появление многосинаптической связи создало предпосылки для качественно новых форм взаимоотношений между системами организма, а также между организмом и средой.

У рыб хорошо развит обонятельный мозг, структурно обособлены бледный шар и нервные центры среднего мозга - красное ядро и черная субстанция. В регуляции жизнедеятельности рептилий ведущую роль приобретают большие полушария головного мозга и подкорковые ядра. У отдельных представителей этого класса появляется новая кора, достигающая совершенства у млекопитающих и высшего их представителя - человека.

Головной мозг

Передний мозг

Конечный мозг

Обонятельный мозг ,Базальные ганглии ,Кора больших полушарий ,Боковые желудочки

Промежуточный мозг

Эпиталамус ,Таламус ,Гипоталамус ,Третий желудочек

Ствол мозга

Средний мозг

Четверохолмие ,Ножки мозга ,Сильвиев водопровод

Ромбовидный мозг

Задний мозг

Варолиев мост ,Мозжечок

Продолговатый мозг

Спинной мозг

Эволюция нервной системы тесно связано с эволюцией мышечных тканей. Клетки многоклеточных животных постепенно специализируется для выполнения различных функций. Мышечные клетки появляются в эволюции раньше, чем нервные клетки. Эти первопредки мышечных клеток находятся на поверхности тела и способны реагировать на внешние воздействия сокращением. Хлопин называл их мионейроэпителиальными клетками. В ходе дальнейшего развития многоклеточных организмов мышечные клетки уходят в более глубокие слои тела, поэтому появляется необходимость в чувствительных клетках, доступных к поверхностной стимуляции раздражителями и способные передавать возбуждение глубже лежащим мышечным клеткам. Так появились организмы, имеющие нейроны на поверхности тела, отростки которых находятся в прямом контакте с мышечными клетками. Следующей ступенью развития нервной системы является появление нервных цепей, сначала из 2-х нейронов, а затем и с большим количеством нейронов. Например, такие 2-х нейронные цепи имеются в каждом сегменте дождевого червя. 1-й нейрон (афферентный, чувствительный) лежит на поверхности тела, аксон 1-го нейрона передает импульс глубже лежащему 2-му нейроны (эфферентный, моторный), а 2-й нейрон вызывает сокращение мышечных клеток сегмента. На следующем этапе появляются межсегментные нейроны у сегментированных животных. Это позволяет координировать совгласованные действия сегментов. Увеличение числа этих соединений привело к появлению пучка, тянущегося вдоль тела близко к центральной оси, в конечном виде - спинного мозга и головного мозга. В целом для эволюции нервной системы характерно консервативность: у высших сохраняется признаки сегментарности, присущие низшим; химическая передача импульсов в синапсах и у низших, и у высших. Чем выше уровень организации, тем выраженнее в эмбриональном периоде опережающее развитие и созревание нервной системы. Чем выше уровень организации вида, тем большее число бластомеров зародыша используется для закладки нервной системы. Так, у человека 1/3 площади поверхности оплодотворенной яйцеклетки является презумптивной зоной (будущей зоной) нервной трубки.

    Функции игровой активности животных.

Функции игровой активности по Фабри.1) Развивающая деятельность. На примере манипуляционных игр. Качественные изменения в поведении детеныша связаны с результатами манипуляционных игр, созревание моторных и сенсорных компонентов этого первичного манипулирования. (возможность взять разные предметы в рот у лисенка связаны с первичным захватыванием соска)Значение – формирование моторных компонентов определяется качественными преобразованиями в двигательной сфере, расширение функций и переход некоторых функций от ротового аппарата и наоборот (иногда и смена функций лакание – сосание). Биологическая обусловленность манипулирования – у кошек мультифункциональность конечностей, у барсуков – специализация к рытью нор →развиты передние конечности. →игры обусловлены образом жизни ж. Но противоречивая картина у безьян - передние конечности менее специализированы и их дополнительные функции получили предельное развитие среди млекопитающих. 1.2. Ювенильное поведение и взрослое поведение Двиг.репертуар взрослого формируется путем обрастания и дополнения инстинктивной, врожденной основы поведения видотипичным инд.опытом т\е путем облигарного начения. С возрастом манипулирование приобретает все больше видотипичных черт. Значение – повышается моторно-сенсорный опыт, устанавливаются биологически значимые связи с компонентами среды. 2.Функция это формирование общения.В процессе совместной игры формируется групповое поведение.Под совместными следует понимать те игры где имеет место согласованность действия. Совместные игры без предметов.В совместных манипуляционных играх ж включают в игру какие нибудь предметы в качестве объекта игры такие игры выполняют коммуникативную роль и предметы могут служить и заменой натурального пищевого объекта.2.2. Игровая сигнализация – согласованность действий основывается на обоюдной врожденной сигнализации эти сигналы выполняют функцию ключевых стимулов игрового поведения. Это позы, движения, звуки оповещают партнера о готовности к игре.Важными являются и сигналы предотворощающие серьезный исход игры без подобного оповещения о том, что агрессия ненастоящая игра может перейти в борьбу.2.3. Значние совместных игр для взрослого поведения – если детеныша лишить игры он будет несостоятелен во взрослой жизни. Учатся половому поведению, материнскому. Молодые обезьяны учатся общаться друг с другом в игре.3. Познавательная функция игры – в ходе игры молодь приобретает информацию о свойствах и качествах предметов в окружающей его среде.Это позволяет уточнять и дополнять видовой опыт применительно к конкретным условиям жизни. Менее всего исследовательский компонент в играх служащих лишь физическими упражнениями, в большей где имеет место активное воздействие на объект т\е в манипуляционных играх. Особое мето – опосредованные игры – трофейные т\е совместное познавание предмета следует общение м\д ж.Итак в ходе онтогенезе расширяется и усложняется познавательная деят.ж, имеет место расширение функций, после выхода из гнезда поведение обращается на качественно новые объекты и можно говорить о смене функций

    Характеристика видов научения у животных по У.Торпу.

Классификация видов научения, предложенная в 1963 г. У.Торпом - описательная по историческому принципу с моментами обобщения. Торп выделяет виды научения, изучавшиеся зоопсихологами в тот или иной период развития науки зоопсихологии. Торп “считает, что у различных видов могут быть разные механизмы, ответственные за обучение; он оставляет открытым вопрос о том, в какой мере случаи однотипного обучения у представителей разных таксономичских типов обусловлены сходными механизмами.

Классификация научения по У.Торпу:

1. Привыкание (габитуация);

2. Ассоциативное научение:

а) классический условный рефлекс.

Синонимы: респондентное научение, условный рефлекс первого рода;

б) оперантный условный рефлекс.

Синонимы:“пробы и ошибки”, условный рефлекс второго рода,

инструментальное научение, научение по Скиннеру;

3. Латентное (скрытое) научение;

4. Инсайт (озарение):

а) собственно инсайт (“улавливание отношений”);

б) подражание типа социального облегчения;

в) истинное подражание (“копирование поведенческих актов”);

5. Импринтинг (запечатление):

а) запечатление привязанности;

б) половой импринтинг.

Торп выделяет научение неассоциативное и ассоциативное.

К неассоцативному относят привыкание, характерное для всех животных, от одноклеточных до человека. При ассоциативном научении образуется ассоциативная связь между двумя психическими явлениями.

Научение: Имитационное научение

Облигатное имитационное научение

Факультативное имитационное научение

Невидотипичное имитационное манипулирование

Имитационное решение задач

Латентное, или скрытое, научение исследовал и пытался объяснять Толмен, наблюдая за крысами в лабиринте. В основе этого вида научения лежит исследовательская мотивация. В ходе исследовательского поведения строится то, что Толмен назвал когнитивной картой. У животного формируется психический образ компонентов среды и собственных действий в среде. После этого животное может переходить к нормальной повседневной жизни. Кроме этих ситуаций, латентное научение происходит у детенышей зверей и детей в процессе игры.

Инсайт - высшая форма научения, основывается на опыте, полученном раньше при других сходных обстоятельствах. Присущ только птицам и млекопитающим, обладающим интеллектом. Оказавшись в проблемной ситуации, животное остается неподвижным и только оценивает обстановку, не совершая никаких действий, после чего начинает действовать с учетом реально существующих связей между компонентами среды.

    Характеристика облигатного и факультативного научения.

Облигатное и факультативное научение.

Неассоциативное облигатное обучение . Облигатное научение - это индивидуальный опыт, который возникает в раннем постнатальном периоде и как бы достраивает врожденные инстинктивные программы. При этой форме научения ключевые стимулы могут не совпадать с индифферентными сигналами. К облигатным формам обучения относятся: реакция суммации, привыкания, запечатление (импринтинг), подражания. Суммация - повышение чувствительности нервной ткани к раздражающим агентам у простейших беспозвоночных в виде освоения! маршрута передвижения, различения съедобных и несъедобных! продуктов, осуществления защитных двигательных реакций. Привы кание - ослабление реакции на многократно предъявленный стимул, биологически не значимый в жизни животного, простейшая форма поведения у низших. Импринтинг - комплекс поведенческих актов, устанавливающих первичную связь новорожденного с родителями. В первый социаль­ный контакт по типу импринтинга осуществляется запоминание ме­стоположения, половое запечатление, а также реакция следования за движущимся объектом у выводковых птиц и копытных. Подражание (имитация) - обучение, достройка генетических программ, видотипичных действий путем наблюдения за поведением другой особи своего вида и повторения этих действий. Особенно это характерно для молодого животного, которое путем имитации роди­тельского поведения обучается различным репертуарам поведения своего вида.

Ассоциативное факультативное обучение . Факультативная(ассоциативная) форма - активная форма индивидуального поведе­ния основанная на извлечении значимых функциональных элементов из окружающей среды для выполнения тех или иных актов. К ним от­носятся: 1) классический условный рефлекс и 2) инструментальный условный рефлекс.Условный рефлекс - ассоциация индифферентного раздражителя и безусловного сигнала, вызывающего безусловную реакцию. Инструментальный условный рефлекс - оперантные инструмен­тальные действия, подкрепленные безусловнорефлекторной реакцией.Система классического и инструментального условных рефлексов значительно расширяет адаптивные возможности живых организ­мов, обеспечивая активный фактор взаимодействия со средой.Когнитивное обучение. Высшая когнитивная форма обучения войственна животным с высокоразвитой нервной системой. Это способность формировать целостный образ или функциональную структуру окружающей среды на установлении закономерных связей и отношений между компонентами этой среды.

Анализ поведения животных приводит к выводу, что все богатство и разнообразие полноценного психического отражения связаны с научением, накоплением индивидуального опыта.

Формирование поведения является процессом реализации видотипичных поведенческих актов, опыта. Поэтому формированием нового поведения, научение, является встраивание в инстинктивное поведение, заложенное генетически, новых элементов.

Существуют такие формы научения, внешне напоминающие инстинктивное поведение, но, тем не менее, представляющие собой накопление личного опыта, но в жестких рамках видотипичного поведения. Таковыми являются формы облигатного научения, опыта, необходимого для выживания данного вида вне зависимости от частных условий жизни.

В противоположность облигатному, факультативное научение является формой сугубо индивидуального приспособления.

По мнению Т. Темброка, факультативное научение является наиболее гибким, лабильным компонентом поведения животных. Но эта лабильность неодинакова в различных формах факультативного научения. Конкретизация видового опыта путем добавления в инстинктивное поведение индивидуального опыта присутствует на всех этапах поведенческого акта. Так американский этолог Р.А. Хайд указывает на изменение инстинктивного поведения научением, через изменение сочетания раздражителей, выделения их из общего фона, усиление и т. д.

Существенно и то, что изменения охватывают как эффекторную, так и сенсорную сферу.

В эффекторной сфере примером научения могут являться как рекомбинации врожденных двигательных элементов, так и вновь приобретенные. У высших животных приобретенные движения эффекторов играют большую роль в процессе познавательной деятельности, интеллектуальной сфере функционирования.

Модификация поведения в сенсорной сфере значительно расширяют возможности ориентации животного, вследствие приобретения новых групп сигналов из внешнего мира. Таким примером является случаи, когда сигнал биологически не важный для животного в результате личного опыта в сочетании с биологически важным приобретает ту же степень важности. И этот процесс не является лишь простым образованием новых условных рефлексов.

Основой научения в этом случае являются динамические процессы в нервной системе, особенно во внешних ее отделах, где осуществляется афферентный синтез разнообразных реакций, обусловленных внешними и внутренними факторами. После эти раздражения сопоставляются с ранним индивидуальным опытом, и, в результате, формируется готовность к выполнению вариабельных ответных действий на ситуацию. Следующий за этим анализ результатов является пусковым механизмом нового афферентного синтеза и т.д.

Так, в дополнение к видовым программам, формируются индивидуальные программы, на которых основываются процессы научения. Животное является в этом процессе не пассивным научаемым, а само активно участвует, обладая «свободой выбора» взаимодействия.

Основой научения является формирования эффекторных программ предстоящих действий, в процессе которых происходит сопоставление и оценка внешних и внутренних раздражителей, видового и индивидуального опыта, регистрация параметров и проверка результатов совершаемых действий. Реализация видового опыта в индивидуальном поведении в большей степени нуждается в процессах научения в начальных этапах поискового поведения, ведь реакции на единичные, случайные признаки каждой конкретной ситуации не могут быть запрограммированы в процессе эволюции.

И поскольку без включения вновь приобретенных элементов в инстинктивное поведение реализация видового опыта неосуществима, а значит, эти включения наследственно закреплены, следовательно, диапазон научения является строго видотипичным.

Эти рамки диспозиции к научению у высших животных значительно шире, чем требуется в реальных условиях жизни, поэтому они обладают большими возможностями индивидуального приспособления к экстремальным ситуациям. Уровень пластичности поведения животного в реализации инстинктивного опыта может служить показателем общего психического развития.

В этом процессе развития разницей в поведении между низшими и высшими животными является не смена простого поведения на более сложное, а наоборот к простейшим формам добавляются более сложные, что ведет к повышению вариабельности поведения

    Характеристика перцептивной психики животных.

Характеристика перцептивной психики . Низший уровень. Она является высшей стадией развития псих.отражения. Эта стадия характеризуется изменением строения деятельности – выделением содержания деят-ти, относящейся к условиям в которых дан объект деят-ти в среде (операции)что мы встречаемся с подлинными навыками и восприятиями.Предметные компоненты среды отражаются как целостные элементы. Предметное восприятие предполагает определенную степень обобщения, появляются чувственные обобщения. На этом уровне – членистоногие, моллюски, ракообразные, паукообразные.Инстинктивное поведение не теряет своей актуальности в процессе эволюции так как оно не может замениться научением.Инстинктивное поведение – явл.видовым поведением, а научение – индивидуальнымпрогресс инстинктивного поведения связан с прогрессом индивидуально-изменивого поведения. У высших позвоночных психика приобрела значение решающего фактора эволюции благодаря сильному процессу научения и в высших его проявлениях – интелектуальных действиях., но при этом сохраняются инстинктивные основы поведения. У высших позвоночных инстинктивные компоненты служат для пространственно – временной ориентации наиболее важных поведенческих актов. Пространственная ориентация осуществляется на основе таксисов – тропо – тело – и менотаксисов - т.е. типично врожденных элементов поведения + мнемотаксисы это запоминание ориентиров.Так же инстинк.поведениебиологическая адекватность реагирования на компоненты окружающей среды. Адекватное реагирование на биологические ситуации возможно если ж руководствуется постоянными признаками этих объектов и ситуаций именно это происходит на генетически фиксированной, врожденной основе когда ж реагирует на ключевые раздражители.инстинктивные действия приобретают для ж познавательное значение. Особенно высокий уровень развития инстинктивное поведение достигает у позвоночных в ритуализированном общении ж друг с другомполноценное общение явл.необходимым условием для высшей интеграции в области поведения – интеграции отдельных особей и сообществ. Большая роль научения в образовании индивидуальных особенностей звукового общения и акустического подражаниямогут общаться особи разных видов.способность высших позвоночных к расширению своих коммуникативных способностей путем научения должна была стать важной предпосылкой зарождения человеческих форм общения. Навыки формируются на основе безусловнорефлекторных связей в их состав всегда входят консервативные двиг.элементы. Заученнные автоматизированные действия играют большую роль в жизни высших млекоптающих + обезьяны и человек. Сложные пластичные навыки выполняют функцию быстрого приспособления организма к условиям среды. Пластичность навыков высшего порядка дополняет регидность навыков низшего порядка и инстинктивных действий. Эта пластичность проявляется при превращении положительного или отрицательного раздражителя в противоположный. Другая важная особенность – возможность переноса навыка в новые условия (т.е. адекватное использование опыта)Сложные навыки – это моторнорецепторные системы обеспечивающие на основе ориентировочной деятельности выработку пластичных двигательных программ. Процесс ориентировки +двиг.активность а нахождение верного решения задачи формируется в ходе этой активности на основе чувственного обобщения.сложные навыки стали предпосылкой и основой развития высших форм псих.деят.ж – интелектуальных действий.

    Характеристика сенсорной психики животных.

Характеристика сенсорной психики животных. Низший уровень псих.развития. Движения простейших см.выше. О психике мы говорим что простейшие активно реагируют на изменения в окруж.средепричем реагируют на биологически непосредственно не значимые свойства компонентов среды как на сигналы о появлении жизненно важных условий среды. Важно для понимания условий зарождения психического – реакция простейших на температуру(реакция на темп.это свойство всей протоплазмы).Но у них нет терморецепторовсосуществование допсихического и психического.Качества психического отражения определяется тем насколько развиты способности к движению, пространственно-временной ориентации и к изменениям врожденного поведения. На примитивном уровне у простейших инстинктивное поведение – кинезы. Ориентация – таксисы. Поисковая фаза инстинктивного поведения(кинезов) - недоразвита.Дистантно на этом уровне распознаются только отрицательные компоненты среды, биологически нейтральные не воспринимаются как сигнальные то есть не существуют для животного как таковые. Пластичность поведения – наиболее примитивная форма – привыкание и в отдельных случаях способность к ассоциативному научению. Почему так? Среда микромира менее стабильна, жизнь микроорганизмов непродолжительна, частая смена поколенийлишнее накопление индивидуального опыта. В этой микросреде нет сложных и разнообразных условий к которым надо приспосабливаться.Высший уровень сенсорной психики. Перцепция – способность к предметному восприятию еще отсутствует. Кольчатые черви в их поведении еще преобладает избегание неблагоприятных внешних условий, но активный поиск положительных раздражителей уже есть и это характерно для высшего уровня элементарной сенсорной психики. В их жизни большую роль играют кинезы и элементарные таксисы. Уже встречаются зачатки сложных форм инстинктивного поведения – пиявки, улитки и появляются высшие таксисы, которые обеспечивают более точную ориентацию ж в пространствеполноценное использование пищевых ресурсов. У высших беспозвоночных появляются зачатки конструктивной деятельности, агрессивного поведения, общения. Общая оценка – первично главная функция примитивной нер.системы состояла в координации внутренних процессов жизнедеятельности в связи со все большей специализацией клеток и новых образований – тканей из которых строятся все органы и системы многоклеточного организма. Внешние функции нер.системы определяются степенью внешней активности которая у этих ж на низком уровне. Вместе с тем строение и функции рецепторов и внешняя деят-ть нер.системы усложняется у ж ведущих активный образ жизни. Стереотипия форм реагирования – определяющая черта всего их поведения.

    Эволюционная необходимость появления психического отражения в органическом мире.

Появившись лишь на определенном этапе развития органического мира, психика присуща только высокоорганизованным живым существам. Она выражается в их способности отражать своим состоянием окружающий мир. Началом этого этапа в эволюции органического мира следует считать появление животной формы жизни, ибо именно специфические условия жизнедеятельности животных породили необходимость качественно нового, активного отражения объективной действительности, способного регулировать усложнившиеся отношения организма со средой.

Таким образом, психика является формой отражения, позволяющей животному организму адекватно ориентировать свою активность по отношению к компонентам среды. При этом, служа активному отражению объективной реальности, материи, психика сама есть свойство высокоразвитой органической материи. Этой материей является нервная ткань животных (или ее аналоги). У подавляющего большинства животных имеется головной мозг - центральный орган нервно-психической деятельности.

Психика животных неотделима от их поведения, под которым мы понимаем всю совокупность проявлений внешней, преимущественно двигательной, активности животного, направленную на установление жизненно необходимых связей организма со средой. Психическое отражение осуществляется на основе этой активности в ходе воздействий животного на окружающий мир. При этом отражаются не только сами компоненты окружающей среды, но и собственное поведение животного, а также произведенные им в результате этих воздействий изменения в среде. Притом у высших животных (у высших позвоночных), которым свойственны подлинные познавательные способности, наиболее полноценное и глубокое отражение предметов окружающего мира совершается именно в ходе их изменения под воздействием животного.

Сетчатая, диффузная, или асинаптическая нервная система.

Возникла она у пресноводной гидры, имеет форму сети, образованной соединениями отросчатых клеток и равномерно распределяясь по всему телу, сгущаясь около ротовых придатков. Клетки, входящие в состав сети, существенно отличаются от нервных клеток высших животных: они малы по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная система проводит возбуждение диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальнейших ступенях развития многоклеточных животных она теряет значение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбахового сплетений пищеварительного канала.

2. Ганглионарная нервная система (у червеобразных) - синаптическая, проводит возбуждение в одном направлении и обеспечивает дифференцированные приспособительные реакции. Этому соответствует высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные органы, в сети возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство разлагаться при возбуждение клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией располагаются группами или узлами - ганглиями, поэтому и сами клетки получили название ганглионарных. Итак, на второй ступени развития нервная система из сетчатой превратилась в ганглионарно-сетчатую. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которым свойственны вегетативные функции.

3. Трубчатая нервная система (у позвоночных) отличается от нервной системы червеобразных тем, что у позвоночных возникли скелетные моторные аппараты с поперечнополосатыми мышцами. Это обусловило развитие центральной нервной системы, отдельные части и структуры которой формируются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозговой трубки вследствие кефализации (от греч. Kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последовательно развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhomencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментируется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадии трех пузырей сменяются стадией пяти пузырей, из которых формируются различные отделы центральной нервной системы: из telencephalon - большие полушария мозга, diencephalon - промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг.

Эволюция нервной системы позвоночных обусловила развитие новой системы со способностью ее создавать временные сообщения функционирующих элементов, которые обеспечиваются расчленением центральных нервных аппаратов на отдельные функциональные единицы - нейроны. Следовательно, с возникновением скелетной моторики у позвоночных развился нейронная цереброспинальная нервная система, которой подчинены сохранившиеся древние формации. Дальнейшее развитие центральной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или подчинения. Суть принципа субординации заключается в том, что эволюционно более молодые мозговые образования не только регулируют функции древних, низших нервных структур, но и подчиняют их себе путем торможения или возбуждения. Причем субординация существует не только между головным и спинным мозгом, она наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в некоторой степени даже между шейным и поясничным утолщениями спинного мозга.

Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологическом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию у хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны, по принципу субординации и растущей специализации центров и корковых структур.

Нервная система имеет нейронный тип строения, т.е. состоит из нервных клеток - нейронов, которые развиваются из нейробластов. Нейрон является основной структурной и функциональной единицей нервной ткани. Он имеет тело и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке только один. Дендриты - это большое количество коротких древовидных разветвленных отростков. Они передают нервный импульс по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нервных клеток является хроматофильная субстанция и нейрофибриллы. Хроматофильная субстанция имеет вид различных по размерам кусков и зерен, содержится в теле и дендритах нейронов и никогда не оказывается в аксонах и начальных сегментах последних. Она является показателем функционального состояния нейрона: исчезает в случае истощения нервной клетки и восстанавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Гольджи), митохондрии и другие органоиды. Скопления тел нервных клеток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В пределах центральной нервной системы они образуют белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные волокна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна есть в составе головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шванновской оболочки) и базальной мембраны. Мембрана аксона служит для проведения электрического импульса и в области аксональных окончаний выделяет медиатор, а мембрана дендритов реагирует на медиатор. Кроме того, она обеспечивает узнавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые нервные волокна имеют участки сужений - узлы (узловые перехваты Ранвье).



Безмиелиновые нервные волокна являются типичными для автономной (вегетативной) нервной системы. Они имеют значительно более простое строение: состоят из осевого цилиндра, нейролемы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем безмиелиновыми (1-2 м/с).

Основными функциями нейрона является восприятие и переработка информации, проведение ее к другим клеткам. Нейроны выполняют также трофическую функцию, влияя на обмен веществ в аксонах и дендритах. Различают следующие виды нейронов: афферентные, или чувствительные, воспринимающие раздражение и трансформирующие его в нервный импульс; ассоциативные, промежуточные, или интернейроны, передающие нервный импульс между нейронами; эфферентные, или моторные, обеспечивающие передачу нервного импульса на рабочий орган. Эта классификация нейронов основывается на положении нервной клетки в составе рефлекторной дуги. Нервное возбуждение по ней передается только в одном направлении. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делят на пирамидные и непирамидные. Нервные клетки контактируют между собой через синапсы, специализированные структуры, где нервный импульс переходит с нейрона на нейрон. В основном синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксо-аксональные, дендро-дентритические. Следовательно, любая часть нейрона может образовывать синапс с различными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать информацию от 1000 других нейронов. В составе синапса различают две части: пресинаптическую и постсинаптическую, между которыми находится синаптическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. В основном она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмиттерами являются различные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергических - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок - рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропептиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов: возбуждающие, способствующие генерации импульсов, и тормозные, которые способны аннулировать действие сигналов. Нервным клеткам присущ низкий уровень возбуждения.

Кроме нейронов, образующих паренхиму нервной клетки, важным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество которых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секреторная, защитная. Глиальные клетки участвуют в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиаторов ЦНС. Нейроглия играет важную роль и в синаптической передаче. Она обеспечивает структурную и метаболическую опору для сети нейронов. Следовательно, между нейронами и глиальными клетками существуют различные морфофункциональные связи.

Нервная система - целостная морфологическая и функциональная совокупность различных взаимосвязанных нервных структур, которая совместно с гуморальной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды. Нервная система действует как интегративная система, связывая в одно целое чувствительность, двигательную активность и работу других регуляторных систем (эндокринной и иммунной).

Общая характеристика нервной системы

Все разнообразие значений нервной системы вытекает из ее свойств.

  1. , раздражимость и проводимость характеризуются как функции времени, то есть это процесс, возникающий от раздражения до проявления ответной деятельности органа. Согласно электрической теории распространения нервного импульса в нервном волокне он распространяется за счет перехода локальных очагов возбуждения на соседние неактивные области нервного волокна или процесса распространяющейся деполяризации , представляющего подобие электрического тока. В синапсах протекает другой-химический процесс, при котором развитие волны возбуждения-поляризации принадлежит медиатору ацетилхолину, то есть химической реакции.
  2. Нервная система обладает свойством трансформации и генерации энергий внешней и внутренней среды и преобразования их в нервный процесс.
  3. К особенно важному свойству нервной системы относится свойство мозга хранить информацию в процессе не только онто-, но и филогенеза.

Нервная система состоит из нейронов, или нервных клеток и , или нейроглиальных клеток. Нейроны - это основные структурные и функциональные элементы как в центральной, так и периферической нервной системе. Нейроны - это возбудимые клетки, то есть они способны генерировать и передавать электрические импульсы (потенциалы действия). Нейроны имеют различную форму и размеры, формируют отростки двух типов: аксоны и дендриты . У нейрона обычно несколько коротких разветвлённых дендритов, по которым импульсы следуют к телу нейрона, и один длинный аксон, по которому импульсы идут от тела нейрона к другим клеткам (нейронам, мышечным либо железистым клеткам). Передача возбуждения с одного нейрона на другие клетки происходит посредством специализированных контактов - синапсов.

Морфология нейронов

Структура нервных клеток различна. Существуют многочисленные классификации нервных клеток, основанные на форме их тела, протяженности и форме дендритов и других признаках. По функциональному значению нервные клетки подразделяются на двигательные (моторные), чувствительные (сенсорные) и интернейроны. Нервная клетка осуществляет две основные функции: а) специфическую - переработка поступающей на нейрон информации и передача нервного импульса; б) биосинтетическую для поддержания своей жизнедеятельности. Это находит выражение и в ультраструктуре нервной клетки. Передача информации от одной клетки к другой, объединение нервных клеток в системы и комплексы разной сложности определяют характерные структуры нервной клетки - аксоны, дендриты, синапсы. Органеллы, связанные с обеспечением энергетического обмена, белоксинтезирующей функцией клетки и др., встречаются в большинстве клеток, в нервных клетках они подчинены выполнению их основных функций - переработке и передачи информации. Тело нервной клетки на микроскопическом уровне представляет собой округлое и овальное образование. В центре клетки располагается ядро. Оно содержит ядрышко и окружено ядерными мембранами. В цитоплазме нервных клеток располагаются элементы зернистой и незернистой цитоплазматической сети, полисомы, рибосомы, митохондрии, лизосомы, многопузырчатые тельца и другие органеллы. В функциональной морфологии тела клетки внимание привлекают прежде всего следующие ультраструктуры: 1) митохондрии, определяющие энергетический обмен; 2) ядро, ядрышко, зернистая и незернистая цитоплазматическая сеть, пластинчатый комплекс, полисомы и рибосомы, в основном обеспечивающие белоксинтезирующую функцию клетки; 3) лизосомы и фагосомы - основные органеллы «внутриклеточного пищеварительного тракта»; 4) аксоны, дендриты и синапсы, обеспечивающие морфофункциональную связь отдельных клеток.

При микроскопическом исследовании обнаруживается, что тело нервных клеток как бы постепенно переходит в дендрит, резкой границы и выраженных различий в ультраструктуре сомы и начального отдела крупного дендрита не наблюдается. Крупные стволы дендритов отдают большие ветви, а также мелкие веточки и шипики. Аксоны, так же как и дендриты, играют важнейшую роль в структурно-функциональной организации мозга и механизмах системной его деятельности. Как правило, от тела нервной клетки отходит один аксон, который затем может отдавать многочисленные ветви. Аксоны покрываются миелиновой оболочкой образуя миелиновые волокна. Пучки волокон составляют белое вещество мозга, черепные и периферические нервы. Переплетения аксонов, дендритов и отростков глиальных клеток создают сложные, не повторяющиеся картины нейропиля. Взаимосвязи между нервными клетками осуществляются межнейрональными контактами, или синапсами. Синапсы делятся на аксосоматические, образованные аксоном с телом нейрона, аксодендритические, расположенные между аксоном и дендритом, и аксо-аксональные, находящиеся между двумя аксонами. Значительно реже встречаются дендро-дендритические синапсы, расположенные между дендритами. В синапсе выделяют пресинаптический отросток, содержащий пресинаптические пузырьки, и постсинаптическую часть (дендрит, тело клетки или аксон). Активная зона синаптического контакта, в которой осуществляются выделение медиатора и передача импульса, характеризуется увеличением электронной плотности пресинаптической и постсинаптической мембран, разделенных синаптической щелью. По механизмам передачи импульса различают синапсы, в которых эта передача осуществляется с помощью медиаторов, и синапсы, в которых передача импульса происходит электрическим путем, без участия медиаторов.

Важную роль в межнейрональных связях играет аксональный транспорт. Принцип его заключается в том, что в теле нервной клетки благодаря участию шероховатого эндоплазматического ретикулума, пластинчатого комплекса, ядра и ферментных систем, растворенных в цитоплазме клетки, синтезируется ряд ферментов и сложных молекул, которые затем транспортируются по аксону в его концевые отделы - синапсы. Система аксонального транспорта является тем основным механизмом, который определяет возобновление и запас медиаторов и модуляторов в пресинаптических окончаниях, а также лежит в основе формирования новых отростков, аксонов и дендритов.

Нейроглия

Глиальные клетки более многочисленны, чем нейроны и составляют по крайней мере половину объёма ЦНС, но в отличие от нейронов они не могут генерировать потенциалов действия. Нейроглиальные клетки различны по строению и происхождению, они выполняют вспомогательные функции в нервной системе, обеспечивая опорную, трофическую, секреторную, разграничительную и защитную функции.

Сравнительная нейроанатомия

Типы нервных систем

Существует несколько типов организации нервной системы, представленные у различных систематических групп животных.

  • Диффузная нервная система - представлена у кишечнополостных. Нервные клетки образуют диффузное нервное сплетение в эктодерме по всему телу животного, и при сильном раздражении одной части сплетения возникает генерализованный ответ - реагирует все тело.
  • Стволовая нервная система (ортогон)- некоторые нервные клетки собираются в нервные стволы, наряду с которыми сохраняется и диффузное подкожное сплетение. Такой тип нервной системы представлен у плоских червей и нематод (у последних диффузное сплетение сильно редуцировано), а также многих других групп первичноротых - например, гастротрих и головохоботных.
  • Узловая нервная система, или сложная ганглионарная система - представлена у аннелид, членистоногих, моллюсков и других групп беспозвоночных. Большая часть клеток центральной нервной системы собраны в нервные узлы - ганглии. У многих животных клетки в них специализированы и обслуживают отдельные органы. У некоторых моллюсков (например, головоногих) и членистоногих возникает сложное объединение специализированных ганглиев с развитыми связями между ними - единый головной мозг или головогрудная нервная масса (у пауков). У насекомых особенно сложное строение имеют некоторые отделы протоцеребрума («грибовидные тела»).
  • Трубчатая нервная система (нервная трубка) характерна для хордовых.

Нервная система различных животных

Нервная система книдарий и гребневиков

Наиболее примитивными животными, у которых есть нервная система, считаются книдарии. У полипов она представляет собой примитивную субэпителиальную нервную сеть (нервный плексус ), оплетающую всё тело животного и состоящую из нейронов разного типа (чувствительных и ганглиозных клеток), соединённых друг с другом отростками (диффузная нервная система ), особенно плотные их сплетения образуются наоральном и аборальном полюсах тела. Раздражение вызывает быстрое проведение возбуждения по телу гидры и приводит к сокращению всего тела, в связи с сокращением эпителиально-мускульных клеток эктодермы и одновременно их расслаблением в энтодерме. Медузы устроены сложнее полипов, в их нервной системе начинает обособляться центральный отдел. Помимо подкожного нервного сплетения у них имеются ганглии по краюзонтика, соединённые отростками нервных клеток в нервное кольцо , от которого иннервируются мышечные волокна паруса и ропалии - структуры, содержащие различные (диффузно-узловая нервная система ). Бо́льшая централизация наблюдается у сцифомедуз и особеннокубомедуз. Их 8 ганглиев, соответствующие 8 ропалиям, достигают достаточно крупных размеров.

Нервная система гребневиков включает субэпителиальное нервное сплетение со сгущениями вдоль рядов гребных пластинок, которые сходятся к основанию сложно устроенного аборального органа чувств. У некоторых гребневиков описаны находящиеся рядом с ним нервные ганглии.

Нервная система первичноротых

Плоские черви имеют уже подразделенную на центральный и периферический отделы нервную систему. В целом нервная система напоминает правильную решётку - такой тип строения был назван ортогоном . Она состоит из мозгового ганглия, у многих групп окружающего статоцист(эндонного мозга), который соединен с нервными стволами ортогона, идущими вдоль тела и соединенные кольцевыми поперечными перемычками (комиссурами ). Нервные стволы состоят из нервных волокон, отходящих от рассеянных по их ходу нервных клеток. У некоторых групп нервная система довольно примитивна и близка к диффузной. Среди плоских червей наблюдаются следующие тенденции: упорядочивание подкожного сплетения с обособлением стволов и комиссур, увеличение размеров мозгового ганглия, который превращается в центральный аппарат управления, погружение нервной системы в толщу тела; и, наконец, уменьшение числа нервных стволов (у некоторых групп сохраняются лишь два брюшных (боковых) ствола ).

У немертин центральная часть нервной системы представлена парой соединённых двойных ганглиев, расположенных над и под влагалищемхоботка, соединённых комиссурами и достигающих значительного размера. От ганглиев идут назад нервные стволы, обычно их пара и расположены они по бокам тела. Они также соединены комиссурами, расположены они в кожно-мускульном мешке или в паренхиме. От головного узла отходят многочисленные нервы, наиболее сильно развиты спинной нерв (часто двойной), брюшной и глоточный.

У брюхоресничных червей имеется надглоточный ганглий, окологлоточное нервное кольцо и два поверхностных боковых продольных ствола, соединённых комиссурами.

У нематод имеется окологлоточное нервное кольцо , вперёд и назад от которого отходят по 6 нервных стволов, наиболее крупные - брюшной и спинной стволы - тянутся вдоль соответствующих гиподермальных валиков. Между собой нервные стволы связаны полукольцевыми перемычками, иннервируют они соответственно мышцы брюшных и спинных боковых лент. Нервная система нематоды Caenorhabditis elegans была закартированана клеточном уровне. Каждый нейрон был зарегистрирован, прослежено его происхождение и большинство, если не все, нейронные связи известны. У этого вида нервная система обладает половым диморфизмом: мужская и гермафродитная нервная система имеют разное количество нейронов и групп нейронов, чтобы выполнять полоспецифические функции.

У киноринх нервная система состоит из окологлоточного нервного кольца и вентрального (брюшного) ствола, на котором, в соответствии с присущей им сегментацией тела, группами расположены ганглионарные клетки.

Схоже устроена нервная система волосатиков и приапулид, но их вентральный нервный ствол лишен утолщений.

У коловраток имеется крупный надглоточный ганглий, от которого отходят нервы, особенно крупные - два нерва, идущие через всё тело по бокам кишечника. Более мелкие ганглии лежат в ноге (педальный ганглий) и рядом с жевательным желудком (ганглий мастакса).

У скребней нервная система очень проста: внутри влагалища хоботка имеется непарный ганглий, от которого отходят тонкие веточки вперёд к хоботку и два более толстых боковых ствола назад, они выходят из влагалища хоботка, пересекают полость тела, а затем по её стенкам идут назад.

У кольчатых червей имеется парный надглоточный нервный узел, окологлоточными коннективами (коннективы в отличие от комиссур соединяют разноимённые ганглии) соединённый с брюшной частью нервной системы. У примитивных полихет она состоит из двух продольных нервных тяжей, в которых располагаются нервные клетки. У более высокоорганизованных форм они образуют парные ганглии в каждом сегменте тела (нервная лестница ), а нервные стволы сближаются. У большинства же полихет парные ганглии сливаются (брюшная нервная цепочка ), у части сливаются и их коннективы. От ганглиев отходят многочисленные нервы к органам своего сегмента. В ряду полихет происходит погружение нервной системы из-под эпителия в толщу мышц или даже под кожно-мускульный мешок. Ганглии разных сегментов могут концентрироваться, если сливаются их сегменты. Аналогичные тенденции наблюдаются и у олигохет. У пиявок нервная цепочка, лежащая в брюшном лакунарном канале, состоит из 20 или более ганглиев, причём в один объединяются первые 4 ганглия (подглоточный нервный узел ) и последние 7.

У эхиурид нервная система развита слабо - окологлоточное нервное кольцо соединено с брюшным стволом, но нервные клетки рассеяны по ним равномерно и нигде не образуют узлов.

У сипункулид имеется надглоточный нервный ганглий, окологлоточное нервное кольцо и лишённый нервных узлов брюшной ствол, лежащий на внутренней стороне полости тела.

Тихоходки имеют надглоточный ганглий, окологлоточные коннективы и брюшную цепочку с 5 парными ганглиями.

Онихофоры имеют примитивную нервную систему. Мозг состоит из трёх отделов: протоцеребрум иннервирует глаза, дейтоцеребрум - антенны, а тритоцеребрум - переднюю кишку. От окологлоточных коннектив отходят нервы к челюстям и ротовым сосочкам, а сами коннективы переходят в далёкие друг от друга брюшные стволы, равномерно покрытые нервными клетками и соединённые тонкими комиссурами.

Нервная система членистоногих

У членистоногих нервная система слагается из парного надглоточного узла, состоящего из нескольких соединённых нервных узлов (головной мозг), окологлоточных коннектив и брюшной нервной цепочки, состоящей из двух параллельных стволов. У большинства групп головной мозг делится на три отдела - прото-, дейто- и тритоцеребрум . Каждый сегмент тела имеет по паре нервных ганглиев, но часто наблюдается слияние ганглиев с образованием крупных ; например, подглоточный нервный узел состоит из нескольких пар сросшихся ганглиев - он контролируетслюнные железы и некоторые мышцы пищевода.

В ряду ракообразных в целом наблюдаются те же тенденции, что и у кольчатых червей: сближение пары брюшных нервных стволов, слияние парных узлов одного сегмента тела (то есть образование брюшной нервной цепочки), слияние её узлов в продольном направлении по мере объединения сегментов тела. Так, у крабов имеется лишь две нервные массы - головной мозг и нервная масса в груди, а у веслоногих и ракушковых раков образуется единственное компактное образование, пронизанное каналом пищеварительной системы. Головной мозг раков состоит из парных долей - протоцеребрума, от которого отходят зрительные нервы, имеющие ганглиозные скопления нервных клеток, и дейтоцеребрума, иннервирующего антенны I. Обычно добавляется и тритоцеребрум, образованный слившимися узлами сегмента антенн II, нервы к которым обычно отходят от окологлоточных коннективов. У ракообразных имеется развитая симпатическая нервная система , состоящая из мозгового отдела и непарного симпатического нерва , имеющего несколько ганглиев и иннервирующего кишечник. Важную роль в физиологии раков играютнейросекреторные клетки , расположенные в различных частях нервной системы и выделяющие нейрогормоны .

Головной мозг многоножек имеет сложное строение, образован, скорее всего, многими ганглиями. Подглоточный ганглий иннервирует все ротовые конечности, от него начинается длинный парный продольный нервный ствол, на котором в каждом сегменте приходится по одному парному ганглию (у двупарноногих многоножек в каждом сегменте, начиная с пятого, по две пары ганглиев, расположенных одна за другой).

Нервная система насекомых, также состоящая из головного мозга и брюшной нервной цепочке, может достигать значительного развития и специализации отдельных элементов. Головной мозг состоит из трёх типичных отделов, каждый из которых состоит из нескольких ганглиев, разделённых прослойками нервных волокон. Важным ассоциативным центром являются «грибовидные тела» протоцеребрума. Особенно развитый мозг у общественных насекомых (муравьёв, пчёл , термитов). Брюшная нервная цепочка состоит из подглоточного нервного узла, иннервирующего ротовые конечности, трёх крупных грудных узлов и брюшных узлов (не более 11). У большинства видов не встречается во взрослом состоянии более 8 ганглиев, у многих и они сливаются, давая крупные ганглиозные массы. Может доходить до образования только одной ганглиозной массы в груди, иннервирующей и грудь, и брюшко насекомого (например, у некоторых мух). В онтогенезе зачастую происходит объединение ганглиев. От головного мозга отходят симпатические нервы. Практически во всех отделах нервной системы имеются нейросекреторные клетки.

У мечехвостов головной мозг внешне не расчленён, но имеет сложное гистологическое строение. Утолщённые окологлоточные коннективы иннервируют хелицеры, все конечности головогруди и жаберные крышки. Брюшная нервная цепочка состоит из 6 ганглиев, задний образован слиянием нескольких. Нервы брюшных конечностей соединены продольными боковыми стволами.

Нервная система паукообразных имеет чёткую тенденцию к концентрации. Головной мозг состоит только из протоцеребрума и тритоцеребрума в связи с отсутствием структур, которые иннервирует дейтоцеребрум. Метамерность брюшной нервной цепочки яснее всего сохраняется ускорпионов - у них большая ганглиозная масса в груди и 7 ганглиев в брюшке, у сольпуг их только 1, а у пауков все ганглии слились в головогрудную нервную массу; у сенокосцев и клещей нет разграничения между нею и головным мозгом.

Морские пауки, как и все хелицеровые, не имеют дейтоцеребрума. Брюшная нервная цепочка у разных видов содержит от 4-5 ганглиев до одной сплошной ганглиозной массы.

Нервная система моллюсков

У примитивных моллюсков хитонов нервная система состоит из окологлоточного кольца (иннервирует голову) и 4 продольных стволов - двухпедальных (иннервируют ногу, которые связаны без особого порядка многочисленными комиссурами, и двух плевровисцеральных , которые расположены кнаружи и выше педальных (иннервируют внутренностный мешок, над порошицей соединяются). Педальный и плевровисцеральный стволы одной стороны также связаны множеством перемычек.

Схоже устроена нервная система моноплакофор, но педальные стволы соединяются у них только одной перемычкой.

У более развитых форм образуется в результате концентрации нервных клеток несколько пар ганглиев, которые смещаются к переднему концу тела, причём наибольшее развитие получает надглоточный узел (головной мозг).

Морфологическое деление

Нервная система млекопитающих и человека по морфологическим признакам подразделяется на:

  • периферическую нервную систему

К периферической нервной системе относят , спинномозговые нервы и нервные сплетения

Функциональное деление

  • Соматическая (анимальная) нервная система
  • Автономная (вегетативная) нервная система
    • Симпатический отдел вегетативной нервной системы
    • Парасимпатический отдел вегетативной нервной системы
    • Метасимпатический отдел вегетативной нервной системы (энтеральная нервная система)

Онтогенез

Модели

В настоящий момент нет единого положения о развитии нервной системы в онтогенезе. Основная проблема заключается в оценке уровня детерминированности (предопределения) в развитии тканей из зародышевых клеток. Наиболее перспективными моделями являются мозаичная модель и регуляционная модель . Ни та, ни другая не может в полной мере объяснить развитие нервной системы.

  • Мозаичная модель предполагает полное детерминирование судьбы отдельной клетки на протяжении всего онтогенеза.
  • Регуляционная модель предполагает случайное и изменяемое развитие отдельных клеток, при детерминированности только нейрального направления (то есть любая клетка определённой группы клеток может стать какой угодно в пределах возможности развития для этой группы клеток).

Для беспозвоночных мозаичная модель практически безупречна - степень детерминации их бластомеров очень высока. Но для позвоночных все гораздо сложнее. Некая роль детерминации и здесь несомненна. Уже на шестнадцатиклеточной стадии развития бластулы позвоночных можно с достаточной долей уверенности сказать, какой бластомер не является предшественником определённого органа.

Маркус Джакобсон в 1985 году ввел клональную модель развития головного мозга (близка к регуляционной). Он предположил, что детерминирована судьба отдельных групп клеток, представляющих собой потомство отдельного бластомера, то есть, «клонов» этого бластомера. Муди и Такасаки (независимо) развили эту модель в 1987. Построена карта 32-клеточной стадии развития бластулы. Например, установлено, что потомки бластомера D2 (вегетативный полюс) всегда встречаются в продолговатом мозге. С другой стороны, потомки почти всех бластомеров анимального полюса не имеют выраженной детерминации. У разных организмов одного вида они могут встречаться или не встречаться в определённых отделах головного мозга.

Регуляционные механизмы

Выяснено, что развитие каждого бластомера зависит от наличия и концентрации специфических веществ - паракринных факторов, которые выделяются другими бластомерами. Например в опыте in vitro с апикальной частью бластулы оказалось, что в отсутствие активина (паракринного фактора вегетативного полюса) клетки развиваются в обычный эпидермис, а при его наличии, в зависимости от концентрации, по возрастанию её: клетки мезенхимы, гладкомышечные, клетки хорды или клетки сердечной мышцы.

В последние годы, благодаря появлению новых методов исследования, в ветеринарной медицине стала развиваться отрасль, названнаяветеринарной психоневрологией, исследующая системные взаимосвязи между деятельностью нервной системы как единого целого и другими органами и системами.

Профессиональные сообщества и журналы

Общество нейронаук (SfN, the Society for Neuroscience) - крупнейшая некоммерческая международная организация, объединяющая более 38 тыс. учёных и врачей, занимающихся изучением мозга и нервной системы. Общество было основано в 1969 году, штаб-квартира находится в Вашингтоне. Основной его целью является обмен научной информацией между учёными. С этой целью ежегодно проводится международная конференция в различных городах США и издается Журнал нейронаук (The Journal of Neuroscience). Общество ведет просветительскую и образовательную работу.

Федерация европейских обществ нейронаук (FENS, the Federation of European Neuroscience Societies)объединяет большое количество профессиональных обществ из европейских стран, в том числе и из России. Федерация была основана в 1998 году и является партнером американского общества нейронаук (SfN). Федерация проводит международную конференцию в разных европейских городах раз в 2 года и выпускает Европейский журнал нейронаук (European Journal of Neuroscience)

Интересные факты

Американка Хэрриет Коул (1853-1888) умерла в возрасте 35 лет от туберкулёза и завещала своё тело науке. Тогда патологоанатом Руфус Б. Универ из медицинского колледжа Ханеманна в Филадельфии потратил 5 месяцев на то, чтобы аккуратно извлечь, разложить и закрепить нервы Хэрриет. Ему удалось даже сохранить глазные яблоки, оставшиеся прикреплёнными к глазным нервам.



Понравилась статья? Поделиться с друзьями: