Тип гибридизации атомов. Гибридизация атомных орбиталей: понятие и основные виды

Инструкция

Рассмотрите молекулу простейшего предельного углеводорода метана. Его выглядит следующим образом: CH4. Пространственная модель молекулы представляет собою тетраэдр. Атом углерода образует с четырьмя атомами водорода совершенно одинаковые по длине и энергии связи. В них, согласно вышеприведенному примеру, участвуют 3 – Р электрона и 1 S – электрон, орбиталь которого стала в точности соответствовать орбиталям трех других электронов в результате произошедшей . Такой тип гибридизации называется sp^3 гибридизацией. Она присуща всем предельным .

А вот простейший представитель непредельных – этилен. Его формула выглядит следующим образом: С2Н4. Какой тип гибридизации присущ углероду в молекуле этого вещества? В результате ее образуются три орбитали в виде несимметричных «восьмерок», лежащих в одной плоскости под углом 120^0 друг к другу. Их образовали 1 – S и 2 – Р электрона. Последний 3-й Р – электрон не видоизменил свою орбиталь, то есть она осталась в виде правильной «восьмерки». Такой тип гибридизации называют sp^2 гибридизацией.

Как же образуются связи в молекуле ? Две гибридизованные орбитали каждого атома вступили во с двумя атомами водорода. Третья гибридизованная орбиталь образовала связь с такой же орбиталью другого . А оставшиеся Р – орбитали? Они «притянулись» друг к другу по обе стороны от плоскости молекулы. Между атомами углерода образовалась связь. Именно атомам с «двойной» связью присуща sp^2 .

А что происходит в молекуле ацетилена или ? Его формула выглядит следующим образом: С2Н2. В каждом атоме углерода гибридизации подвергаются только два электрона: 1 --S и 1 – Р. Остальные два сохранили орбитали в виде «правильных восьмерок», перекрывающихся» в плоскости молекулы и по обе стороны от нее. Вот поэтому такой тип гибридизации носит название sp – гибридизации. Она присуща атомам с тройной связью.

Все слова , существующие в том или ином языке, можно разделить на несколько групп. Это важно при определении как значения, так и грамматических функций слова . Отнеся его к определенному типу , вы можете видоизменять его в соответствии с правилами, даже если оно вам раньше не встречалось. Типами элементов слова рного состава языка занимается лексикология.

Вам понадобится

  • - текст;
  • - словарь.

Инструкция

Выберите слово, тип которого вы хотите определить. Принадлежность его к той или иной части речи пока не играет роли, как и форма, и функция его в предложении. Это может быть абсолютно любое слово. Если оно не указано в задании, выпишите первое попавшееся. Определите, называет ли оно предмет, качество, действие или нет. По этому параметру все слова делятся на знаменательные, местоименные, числительные, служебные и междометные. К первому типу относятся существительные, прилагательные, глаголы и . Именно они обозначают названия предметов, качеств и действий. Второй тип слов, у которых есть функция называния - местоименный. Способность называть отсутствует у , междометного и служебного типов. Это сравнительно небольшие группы слов, но они есть в каждом .

Определите, способно ли заданное слово выражать понятие. Эта функция есть у слова рных единиц знаменательного типа, ведь именно они и формируют понятийный ряд любого языка. Однако любое число тоже относится к разряду понятий, а соответственно, тоже несет в себе эту функцию. Есть она и у служебных слов, а вот у местоимений и междометий - отсутствует.

Рассмотрите, как будет слово, если оно окажется в предложении. Может ли оно являться ? Им может быть любое слово знаменательного типа. Но эта возможность есть и у , а также у числительного. А вот служебные слова играют вспомогательную роль, ни подлежащим, ни , ни второстепенными членами предложения они быть не могут, как и междометия.

Для удобства можно составить табличку из четырех столбцов шести строк. В верхней строке назовите соответствующие столбцы «Типы слов», «Называние», «Понятие» и «Способно ли быть членом предложения». В первом левом столбце запишите названия типов слов, их всего пять. Определите, какими функциями обладает заданное слово, а каких у него нет. В соответствующих графа поставьте плюсы и . Если во всех трех графах стоят плюсы, то это знаменательный тип. У местоименного плюсы будут стоять в первом и третьем столбцах, - во второй и в третьей. Служебные слова могут только выражать понятие, то есть имеют один плюс во второй графе. Напротив междометий во всех трех столбцах будут стоять минусы.

Видео по теме

Гибридизацией называется процесс получения гибридов – растений или животных, произошедших от скрещения разных сортов и пород. Слово гибрид (hibrida) с латинского языка переводится как «помесь».

Гибридизация: естественная и искусственная

Процесс гибридизации основан на объединении в одной клетке генетического материала разных клеток от разных особей. Различается внутривидовая и отдаленная, при которой происходит соединение разных геномов. В природе естественная гибридизация происходила и происходит без участия человека постоянно. Именно скрещиваясь внутри вида, изменялись и улучшались растения и появлялись новые сорта и породы животных. С точки зрения происходит гибридизация ДНК, нуклеиновых кислот, изменения на атомном и внутриатомном уровнях.

В академической химии под гибридизацией понимается специфическое взаимодействие в молекулах вещества атомных орбиталей. Но это не реальный физический процесс, а лишь гипотетическая модель, концепция.

Гибриды в растениеводстве

В 1694 году немецкий ученый Р. Камерариус предложил искусственно получать . А в 1717 году английский Т. Фэрчайдл впервые скрестил разные виды гвоздик. Сегодня внутривидовая гибридизация растений производится с целью получения высокоурожайных или приспособленных, например, морозостойких сортов. Гибридизация форм и сортов является одним из методов селекции растений. Таким образом создано огромное количество современных сортов сельхозкультур.

При отдаленной гибридизации, когда скрещиваются представители разных видов и происходит объединение разных геномов, полученные гибриды в большинстве случаев не дают потомство или производят помеси низкого качества. Именно поэтому нет смысла оставлять семена созревших на грядке огурцов-гибридов, а всякий раз покупать их семена в специализированном магазине.

Селекция в животноводстве

В мире естественная гибридизация, как внутривидовая, так и отдаленная, также имеет место. Мулы были известны человеку еще за две тысячи лет до нашей эры. И в настоящее время мул и лошак используется в домашнем хозяйстве как относительно дешевое рабочее животное. Правда, такая гибридизация является межвидовой, поэтому самцы-гибриды рождаются обязательно стерильными. Самки же очень редко могут дать потомство.

Мул – это гибрид кобылицы и осла. Гибрид, полученный от скрещивания жеребца и ослицы, называется лошак. Специально разводятся мулы. Они выше и сильнее лошака.

А вот скрещивание домашней собаки с волком было очень распространенным занятием у охотников. Затем, полученное потомство подвергалось дальнейшей селекции, в результате создавались новые породы собак. Сегодня селекция животных – важная составляющая успешности отрасли животноводства. Гибридизация проводится целенаправленно, с ориентацией на заданные параметры.

Основные понятия органической химии. Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область - органическая химия.

Современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А. М. Бутлеровым. (НЕ ФАКТ ЧТО ТО ЧТО НУЖНО).

Гибридизация (химия) - специфическое взаимодействие атомных орбиталей в молекулах.

Атомы (наименьшая возможная частица любого из простейших химических веществ, называемых элементами) состоят из ядер и электронов, которые вокруг них крутятся. Электроны - это не совсем корпускулы, но и волны тоже, поэтому они образуют своеобразные облака вокруг ядер атомов (некие пространства, в которых "обитают" электроны). Если облако одного электрона парекрывается с облаком другого, то может произойти гибридизация - электронные облака объединяются и два электрона начинают "обитать" в одном общем облаке. Поскольку эти электроны принадлежат разным атомам, атомы становятся связаными.

Гибридизация орбиталей - концепция смешения разных, но близких по энергии орбиталей данногоатома, с возникновением того же числа новых гибридных орбиталей, одинаковых по энергии и форме. Гибридизация атомных орбиталей происходит при возникновении ковалентной связи между атомами. Гибридизация орбиталей очень полезна при объяснении формы молекулярных орбиталей и является интегральной частью теории валентных связей.

Химические превращения высокомолекулярных соединений. Реакции деструкции полимеров. Виды деструкции.

Различают три вида реакций полимеров:
– реакции без изменения степени полимеризации (полимераналогичные превращения);
– реакции, приводящие к ее увеличению (структурирование, блок- и привитая сополимеризация);
– реакции, приводящие к уменьшению степени полимеризации (разрыв цепи при деструкции полимера).

Виды:

Химическая деструкция;

Окислительн6ая деструкция;

Окислительная деструкция наблюдается как у гетероцепных, так и у карбоцепных полимеров;

Деструкция под влиянием физических воздействий

Термическая деструкция

Фотохимическая деструкция

Деструкция под влиянием радиоактивного излучения. Под влиянием ионизирующих излучений полимеры претерпевают глубокие химические и структурные изменения, приводящие к изменению физико-химических и физико-механических свойств


Механохимическая деструкция

Билет № 5

1.Типы гибридизации атомных орбиталей в органических соединениях. sp 3 −, sp 2 −, sp− гибридизация.

Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома.

Виды гибридизации

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в однойплоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация атомных орбиталей – процесс, позволяющий понять, как атомы видоизменяют свои орбитали при образовании соединений. Так, что же такое гибридизация, и какие ее типы существуют?

Общая характеристика гибридизации атомных орбиталей

Гибридизация атомных орбиталей – это процесс, при котором смешиваются различные орбитали центрального атома, в результате чего образуются одинаковые по своим характеристикам орбитали.

Гибридизация происходит в процессе образования ковалентной связи.

Гибридная орбиталь имеет фору знака бесконечности или несимметричной перевернутой восьмерки, вытянутой в сторону от атомного ядра. Такая форма обусловливает более сильное, чем в случае чистых атомных орбиталей, перекрывание гибридных орбиталей с орбиталями (чистых или гибридных) других атомов и приводит к образованию более прочных ковалентных связей.

Рис. 1. Гибридная орбиталь внешний вид.

Впервые идею о гибридизации атомных орбиталей выдвинул американский ученый Л. Полинг. Он считал, что у вступающего в химическую связь атома имеются разные атомные орбитали (s-, p-, d-, f-орбитали), то в результате происходит гибридизация этих орбиталей. Суть процесса заключается в том, что из разных орбиталей образуются эквивалентные друг другу атомные орбитали.

Типы гибридизации атомных орбиталей

Существует несколько видов гибридизации:

  • . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и одна p-орбиталь. В результате образуются две полноценных sp-орбиталей. Эти орбитали расположены к атомному ядру таким образом, что угол между ними составляет 180 градусов.

Рис. 2. sp-гибридизация.

  • sp2-гибридизация . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и две p-орбитали. В результате происходит образование трех гибридных орбиталей, которые расположены в одной плоскости под углом 120 градусов друг к другу.
  • . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и три p-орбитали. В результате происходит образование четырех полноценных sp3-орбиталей. Эти орбитали направлены к вершине тетраэдра и располагаются друг к другу под углом 109,28 градусов.

sp3-гибридизация характерна для многих элементов, например, атома углерода и других веществ IVА группы (CH 4 , SiH 4 , SiF 4 , GeH 4 и др.)

Рис. 3. sp3-гибридизация.

Возможны также и более сложные виды гибридизации с участием d-орбиталей атомов.

Что мы узнали?

Гибридизация – сложный химический процесс, когда разные орбитали атома образуют одинаковые (эквивалентные) гибридные орбитали. Первым теорию гибридизации озвучил американец Л. Полинг. Выделяют три основных вида гибридизации: sp-гибридизация, sp2-гибридизация, sp3-гибридизация. Существуют также более сложные виды гибридизации, в которых участвуют d-орбитали.

По характеру перекрывания различают сигма σ-и пи-связи - π. σ-связь- это связь, в которой перекрывание атомных орбиталей происходит вдоль оси, связывающей ядра атомов . Сигма связь может образовываться всеми типами орбиталей. Между двумя атомами в химической частице возможна только одна σ-связь . При перекрывании параллельных друг другу атомных орбиталей перпендикулярно оси связи образуются π-связи. Пи-связь: дополнительная к сигма связи. Одинарная связь – всегда сигма-связь. Двойная связь – состоит из 1 сигма и 1 пи-связи. Тройная связь: 1 сигма и 2 пи-связи.
Одинарная (σ) Двойная (σ+π) Тройная (σ + π + π)
С–С С–Н С–О H–Cl С=O С=С О=О С≡С С≡N N≡N


Гибридизация

Если атом связан с другими атомами ОДИНАКОВЫМИ СВЯЗЯМИ, но при их образовании участвуют орбитали разного типа, то используется метод ГИБРИДИЗАЦИИ.

Пример: Молекула СН 4 имеет форму правильного тетраэдра, в ней все 4 связи имеют одинаковую длину, прочность, находятся под одинаковыми углами друг к другу.

Однако у четырёхвалентного атома углерода электроны расположены на трёх р-орбиталях и одной s-орбитали. Они разные по энергии, форме и расположены в пространстве иначе.

Для объяснения используется понятие ГИБРИДИЗАЦИИ:

Из четырёх атомных орбиталей образуются 4 новых,

гибридных орбитали, которые в пространстве располагаются НА МАКСИМАЛЬНОМ УДАЛЕНИИ ДРУГ ОТ ДРУГА. Это правильный тетраэдр, углы между связями равны 109° 29´.

Так как в образовании четырёх связей участвуют одна s и три р-оболочки, то такой тип гибридизации обозначается sp 3

В зависимости от числа и типа орбиталей, которые принимают участие в гибридизации, отличают следующие типы гибридизации:

1) sp-гибридизация. Участвуют одна s-орбиталь и одна р-орбиталь. Молекула имеет линейную структуру, валентный угол – 180 0 .

2) sp 2 -гибридизация. Участвуют одна s-орбиталь и две р-орбитали. Молекула располагается в плоскости (концы гибридных орбиталей направлены к вершинам равностороннего треугольника), валентный угол – 120 0 .

3) sp 3 -гибридизация. Участвуют одна s-орбиталь и три р-орбитали. Молекула имеет тетраэдрическую форму, валентный угол – 109,28 0 .

Как определить тип гибридизации?

1. В гибридизации участвуют сигма-связи и НЕПОДЕЛЁННЫЕ ИОННЫЕ ПАРЫ.

2. Общее число участвующих орбиталей сигма-связей + электронных пар = числу гибридных орбиталей и определяет тип гибридизации.

Задание: определить тип гибридизации атома углерода в молекуле фосгена.

O=C – Cl

1) углерод образует 2 одинарные связи (это сигма-связи) и одну двойную связь (сигма+пи).Все 4 электрона углерода участвуют в образовании этих связей.

2) таким образом, в гибридизации примут участие ТРИ СИГМА-связи. Это sp 2 - гибридизация , молекула имеет форму плоского треугольника. Пи-связь располагается перпендикулярно плоскости этого треугольника.

Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуются две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра центрального атома. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

Sp2-гибридизация

Sp2-гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуются три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары)

Тип гибридизации

Число гибридных орбиталей

Геометрия

Структура

Примеры

Линейная

BeF 2 , CO 2 , NO 2 +

sp 2

Треугольная

BF 3 , NO 3 - , CO 3 2-

sp 3

Тетраэдрическая

CH 4 , ClO 4 - , SO 4 2- , NH 4 +

dsp 2

Плоскоквадратная

Ni(CO) 4 , 2-

sp 3 d

Гексаэдрическая

sp 3 d 2 , d 2 sp 3

Октаэдрическая

SF 6 , Fe(CN) 6 3- , CoF 6 3-

4. Электровалентная, ковалентная, донорно-акцепторная, водородная связи. Электронное строение σ и π связи. Основные характеристики ковалентной связи: энергия связи, длина, валентный угол, полярность, поляризуемость.

Если между двумя атомами или двумя группами атомов имеет место электростатическое взаимодействие приводящее к сильному притяжению и образованию химической связи, то такая связь называется электровалентной или гетерополярной.

Ковалентная связь- химическая связь, образованная перекрытием пары валентных электронных облаков. Обепечивающие связь электронные облака называется общей электронной парой.

Донорно-акцепторная связь –это химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободного уровня другого атома (акцептора). Это связь отличается от ковалентной связи происхождением связи электронов.

Водородная связь -это вид химического взаимодейсвия атомов в молекуле отличающийся тем, что существенное участие в нем принимает атом водорода, уже связанный ковалентной связью с другими атомами

σ связь-это первая и более прочная связь, которая образуется при перекрывании электронных облаков в направлении прямой, соединяющий центры атомов.

σ связь-это обычные ковалентные связи атомов углерода с атомами водорода. Молекулы предельных углеродов содержат только σ связи.

π связь это менее прочная связь, которая образуется при перекрывании электронных плоскости атомов ядер

Электроны π и σ связи теряют свою принадлежность к определенному атому.

Особенности σ и π связи: 1)вращение атомов углерода в молекуле возможна в случае, если они соединены σ связью 2)появление π связи лишает атома углерода в молекуле в свободного вращения.

Длина связи- это расстояние между центрами связанных атомов.

Валентный угол- это угол между двумя связями, имеющий общий атом.

Энергия связи- энергия, выделяющаяся при образовании хим. связи и характеризующаяся ее прочность

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные. Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

5. Ионная связь (электровалентная)- очень прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара переходит преимущественно к атому с большей электроотрицательностью. Ковалентная связь – возникает за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону. Донорно акцепторная связь (координационная связь) химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободной орбитали другого атома (акцептора).пример NH4 Для возникновения водородных связей важно, чтобы в молекулах вещества были атомы водорода, связанные с небольшими, но электроотрицательными атомами, например: O, N, F. Это создает заметный частичный положительный заряд на атомах водорода. С другой стороны, важно, чтобы у электроотрицательных атомов были неподеленные электронные пары. Когда обедненный электронами атом водорода одной молекулы (акцептор) взаимодействует с неподеленной электронной парой на атоме N, O или F другой молекулы (донор), то возникает связь, похожая на полярную ковалентную. При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали, имеющие более низкую энергию. В зависимости от формы МО – σ-МО или π-МО – образующиеся связи относят к σ- или p-типу. σ-Связь – ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов (т. е. при осевом перекрывании АО) . π-Связь – ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов.
π-Связи возникают между атомами, уже соединенными σ-связью (при этом образуются двойные и тройные ковалентные связи) . π-Связь слабее σ-связи из-за менее полного перекрывания р-АО. Различное строение σ- и π-молекулярных орбиталей определяет характерные особенности σ- и π-связей. 1.σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами. 2.По σ-связям возможно внутримолекулярное вращение атомов, т. к. форма σ-МО допускает такое вращение без разрыва связи (cм аним. Картинку внизу)) . Вращение по двойной (σ + π) связи невозможно без разрыва π-связи! 3.Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами. Поэтому поляризуемость π-связи значительно выше, чем σ-связи.

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождаядипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

6.Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств. В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum - молоко), пальмитиновая кислота - из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys - сладкий).

Тривиальные названия особенно часто имеют природные соединения - аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

Рациональная номенклатура предельных углеводородов

В отличие от тривиальной названия основываются на строении молекул. Названия сложных структур состовляют из названия блоков те радикалов связанных с основным навиболее важным узлом молекулы по этой номенклатуре алканы рассматриваются как производные метана у которого атомы водорода замещены соответствующими радикалами. Выбор метанового углерода произвольный поэтому 1 соедин может иметь неск названий.по этой номенклатуре алкены рассматривают как производные этилена а алкины-ацетилена.

7. Гомология органических соединений или закон гомологов - состоит в том, что вещества однойхимической функции и одинакового строения, отличающиеся друг от друга по своему атомному составу лишьна nСН 2, оказываются сводными и во всем своем остальном хим. характере, а различие их физическихсвойств возрастает или вообще изменяется правильно по мере увеличения разницы в составе,определяемой числом n групп СН 2. Такие хим. сходственные соединения образуют так наз. гомологическийряд, атомный состав всех членов которого возможно выразить общею формулою в зависимости от составапервого члена ряда и числа атомов углерода; органические вещества одного названия типо алканы только.

Изомеры- соединения имеющие одинаковый состав но разное строение и свойства.

8. Нуклеоф и льные и электроф и льные реаг е нты . Участвующие в замещения реакциях реагенты подразделяются на нуклеофильные и электрофильные. Нуклеофильные реагенты, или нуклеофилы, предоставляют свою паруэлектронов на образование новой связи и вытесняют из молекулы RX уходящую группу (X) с парой электронов, образовывавшей старую связь, например:

(где R - органический радикал).

К нуклеофилам относятся отрицательно заряженные ионы (Hal - , ОН - , CN - , NO 2 - , OR - , RS - , NH 2 - , RCOO - и др.), нейтральные молекулы, обладающие свободной парой электронов (например, Н 2 О, NH3, R 3 N, R 2 S, R 3 P, ROH, RCOOH), и металлоорганич. соединения R - Me с достаточно поляризованной связью С - Me + , т. е. способные быть донорами карбанионов R - . Реакции с участием нуклеофилов (нуклеофильное замещение) характерны главным образом Для алифатических соединений, например гидролиз (ОН - , Н 2 О), алкоголиз (RO - , ROH), ацидолиз (RCOO - , RСООН), аминирование (NH - 2 , NH 3 , RNH 2 и др.), цианирование (CN -) и т. д.

Электрофильные реагенты, или электрофилы, при образовании новой связи служат акцепторами пары электронов и вытесняют уходящую группу в виде положительно заряженной частицы. К электрофилам относятся положительно заряженные ионы (например, Н + , NO 2 +), нейтральные молекулы с электронным дефицитом, например SO 3 , и сильно поляризованные молекулы (СН 3 СОО - Br + и др.), причём поляризация особенно эффективно достигаетсякомплексообразованием с коэффициентами Льюиса (Hal + - Hal - · А, R + - Cl - · A, RCO + - Cl - · А, где A= A1C1 3 , SbCl 5 , BF 3 и др.). К реакциям с участием электрофилов (электрофильное замещение) относятся важнейшие реакцииароматических углеводородов (например, нитрование, галогенирование, сульфирование, реакция Фриделя - Крафтса):

(E + = Hal + , NO + 2 , RCO + , R + и др.)

В определённых системах реакции с участием нуклеофилов осуществляются в ароматическом ряду, а реакции с участием электрофилов - в алифатическом (чаще всего в ряду металлоорганических соединений).

53. взаимодействие оксосоединений с металлорганическими (кетон или альдегид плюс металорганика)

Реакции широко используются для получения спиртов.при присоединении к формальдегиду реактива гриньяра(R-MgX) образуется первичный спирт, другим альдегидом вторичные, а кетонам тритичные спирты



Понравилась статья? Поделиться с друзьями: