Полный пример решения матрицы user login. Решение матриц

Рассмотрим систему линейных уравнений с многими переменными:

где aij- коэффициенты при неизвестных хi; bi-свободные члены;

индексы: i = 1,2,3…m- определяют номер уравнения и j = 1,2,3...n- номер неизвестного.

Определение: Решением системы уравнений (5) называется совокупность n чисел (х10, х20,….хn0), при подстановке которых в систему все уравнения обращаются в верные числовые тождества.

Определение: Система уравнений называется совместной, если она имеет хотя бы одно решение. Совместная система называется определенной, если она имеет единственное решение (х10, х20,….хn0), и неопределенной, если таких решений несколько.

Определение: Система называется несовместной, если она не имеет решения.

Определение: Таблицы, составленные из числовых коэффициентов (aij) и свободных членов (bi) системы уравнений (5), называются матрицей системы (А) и расширенной матрицей (А1), которые обозначаются в виде:

Определение: Матрица системы А, имеющая неравное число строк и столбцов (n?m), называется прямоугольной. Если число строк и столбцов совпадает (n=m), то матрица называется квадратной.

Если в системе число неизвестных равно числу уравнений (n=m), то система имеет квадратную матрицу n-го порядка.

Выделим в матрице А k-произвольных строк и k-произвольных столбцов (km, kn).

Определение: Определитель k-порядка, составленный из элементов матрицы А, расположенных на пересечении выделенных строк и столбцов, называется минором k-порядка матрицы А.

Рассмотрим всевозможные миноры матрицы А. Если все миноры (k+1)-порядка равны нулю, а хотя бы один из миноров k-порядка не равен нулю, то говорят, что матрица имеет ранг равный k.

Определение: Рангом матрицы А называется наибольший порядок минора этой матрицы, отличного от нуля. Ранг матрицы обозначается через r(A).

Определение: Всякий отличный от нуля минор матрицы, порядок которого равен рангу матрицы, называется базисным.

Определение: Если для двух матриц А и В их ранги совпадают r(A)= r(В), то эти матрицы называются эквивалентными и обозначаются А В.

Ранг матрицы не изменится от элементарных, эквивалентных преобразований, которые включают:

  • 1. Замену строк столбцами, а столбцов - соответствующими строками;
  • 2. Перестановку строк или столбцов местами;
  • 3. Вычеркивание строк или столбцов, все элементы которых равны нулю;
  • 4. Умножение или деление строки или столбца на число, отличное от нуля;
  • 5. Прибавление или вычитание элементов одной строки или столбца из другой, умноженной на любое число.

При определении ранга матрицы используют эквивалентные преобразования, с помощью которых исходную матрицу приводят к ступенчатой (треугольной) матрице.

В ступенчатой матрице под главной диагональю располагаются нулевые элементы, причем первый ненулевой элемент каждой её строки, начиная со второй, расположен правее первого неравного нулю элемента предыдущей строки.

Отметим, что ранг матрицы равен числу ненулевых строк ступенчатой матрицы.

Например, матрица А= - ступенчатого вида и её ранг равен числу ненулевых строк матрицы r(A)=3. Действительно, все миноры 4-го порядка с нулевыми элементами 4-ой строки равны нулю, а миноры 3-го порядка отличны от нуля. Для проверки вычислим определитель минора первых 3-х строк и3-х столбцов:

Любую матрицу можно привести к ступенчатой путем обнуления элементов матрицы под главной диагональю с помощью элементарных действий.

Вернемся к исследованию и решению системы линейных уравнений (5).

Важную роль в исследовании систем линейных уравнений играет Теорема Кронекера-Капели. Сформулируем эту теорему.

Теорема Кронекера-Капели: Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы А равен рангу расширенной матрицы А1, т.е. r(A)=r(A1). В случае совместности система является определенной, если ранг матрицы системы равен числу неизвестных, т.е. r(A)=r(A1)=n и неопределенной, если этот ранг меньше числа неизвестных, т.е. r(A)= r(A1)

Пример. Исследовать систему линейных уравнений:

Определим ранги матрицы системы А и расширенной матрицы А1. Для этого составим расширенную матрицу А1 и приведем её к ступенчатому виду.

При приведении матрицы выполним следующие действия:

  • 2) вычтем из 3 и 4 строк 1-ю строку, умноженную на 4;
  • 3) умножим 4-ю строку на (-1) и поменяем местами со 2-ой строкой;
  • 4) сложим 3 и 4 строки со 2-й строкой, умноженной соответственно на 5 и 4;
  • 5) вычитаем из 4-ой строки 3-ю и вычеркиваем 4-ю строку с нулевыми элементами.

В результате выполненных действий получили ступенчатую матрицу с тремя ненулевыми строками как в матрице системы (до черты), так и в расширенной матрице. Откуда видно, что ранг матрицы системы равен рангу расширенной матрицы и равен 3, но меньше числа неизвестных (n=4).

Ответ: т.к. r(A)=r(A1)=3

В связи с тем, что ранг матриц удобно определять путем приведения их к ступенчатому виду, рассмотрим способ решения системы линейных уравнений методом Гаусса.

метод Гаусса

Сущность метода Гаусса заключается в последовательном исключении неизвес тных путем приведения к ступенчатому виду расширенной матрицы А1, которая включает до черты матрицу системы А. При этом одновременно определяются ранги матриц А, А1 и проводится исследование системы по теореме Кронекера-Капели. На последнем этапе решают систему уравнений ступенчатого вида, делая подстановки снизу вверх найденных значений неизвестных.

Рассмотрим применение метода Гаусса и теоремы Кронекера-Капели на примере.

Пример. Решить систему методом Гаусса:

Определим ранги матрицы системы А и расширенной матрицы А1. Для этого составим расширенную матрицу А1 и приведем её к ступенчатому виду. При приведении выполним следующие действия:

  • 1) вычтем из 2-ой строки 1-ю строку;
  • 2) вычтем из 3-ей строки 1-ю строку, умноженную на 2;
  • 3) разделим 2-ю строку на (-2),а 3-ю строки умножим на (-1) и поменяем их местами.

Получили ступенчатую матрицу, у которой число строк равно 3, причем у матрицы системы (до черты) также нет нулевых сток. Следовательно, ранги матрицы системы и расширенной матрицы равны 3 и равны числу неизвестных, т.е. r(A)=r(A1)=n=3.. Согласно теореме Кронекера-Капели система совместна и определена, имеет единственное решение.

В результате преобразования матрицы А1, обнуляя коэффициенты при неизвестных, последовательно исключили их из уравнений и получили ступенчатую (треугольную) систему уравнений:

Двигаясь последовательно снизу вверх, подставляя решение (х3=1) из третьего уравнения во второе, а решения (х2=1, х3=1) из второго и третьего уравнений в первое, получим решение системы уравнений: х1=1,х2=1, х3=1.

Проверка: -(!) Ответ: (х1=1,х2=1, х3=1).

метод Жордано-Гаусса

Данную систему можно решить усовершенствованным методом Жордано-Гаусса, который заключается в том, что матрицу системы А в расширенной матрице (до черты) приводят к единичной матрице: Е= с единичными диагональными и нулевыми недиагональными элементами и получают сразу решение системы без дополнительных подстановок.

Решим рассмотренную выше систему методом Жордано-Гаусса. Для этого преобразуем полученную ступенчатую матрицу в единичную, выполнив следующие действия:

  • 1) вычтем из 1-ой строки 2-ю строку;
  • 2) сложим с 1-ой строкой 3-ю строку, умноженную на 3;
  • 3) вычтем из 2-ой строки 3-ю строку, умноженную на 4.

Исходная система уравнений свелась к системе:, которая и определяет решение.

основные действия с матрицами

Пусть даны две матрицы: А= B=.

  • 1. Матрицы равны А=В, если равны их одноименные элементы:aij=bij
  • 2. Суммой (разностью) матриц (А ± В) называется матрица, определяемая равенством:

При суммировании (вычитании) матриц складываются (вычитаются) их одноименные элементы.

3. Произведением числа k на матрицу A называется матрица, определяемая равенством:

При умножении матрицы на число умножаются на это число все элементы матрицы.

4. Произведением матриц АВ называется матрица, определяемая равенством:

При умножении матриц элементы строк первой матрицы умножаются на элементы столбцов второй матрицы и суммируются, причем элемент матрицы-произведения, стоящий в i-й строке и j-м столбце, равен сумме произведений соответственных элементов i-й строки первой матрицы и j-м столбца второй матрицы.

При умножении матриц в общем случае переместительный закон не действует, т.е. АВ?ВА.

5. Транспонированием матрицы А называется действие, приводящее к замене строк столбцами, а столбцов - соответствующими строками.

Матрица АТ= называется транспонированной матрицей для матрицы А=.

Если определитель матрицы А не равен нулю (Д?0), то такую матрицу называют невырожденной. Для всякой невырожденной матрицы А существует обратная матрица А-1, для которой выполняется равенство: А-1 А= А А-1=Е, где Е=- единичная матрица.

6. Обращением матрицы А называется такие действия, при которых получается обратная матрица А-1

При обращении матрицы А выполняются следующие действия.

Назначение сервиса . С помощью данного онлайн-калькулятора вычисляются неизвестные {x 1 , x 2 , ..., x n } в системе уравнений. Решение осуществляется методом обратной матрицы . При этом:
  • вычисляется определитель матрицы A ;
  • через алгебраические дополнения находится обратная матрица A -1 ;
  • осуществляется создание шаблона решения в Excel ;
Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word (см. пример оформления).

Инструкция . Для получения решения методом обратной матрицы необходимо задать размерность матрицы. Далее в новом диалоговом окне заполнить матрицу A и вектор результатов B .

Количество переменных 2 3 4 5 6 7 8 9 10
См. также Решение матричных уравнений .

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X ={x 1 , x 2 , ..., x n } получается умножением обратной матрицы на вектор результата B .
Пример . Найти решение системы матричным методом. Запишем матрицу в виде:
Алгебраические дополнения.
A 1,1 = (-1) 1+1
1 2
0 -2
∆ 1,1 = (1 (-2)-0 2) = -2

A 1,2 = (-1) 1+2
3 2
1 -2
∆ 1,2 = -(3 (-2)-1 2) = 8

A 1,3 = (-1) 1+3
3 1
1 0
∆ 1,3 = (3 0-1 1) = -1

A 2,1 = (-1) 2+1
-2 1
0 -2
∆ 2,1 = -(-2 (-2)-0 1) = -4

A 2,2 = (-1) 2+2
2 1
1 -2
∆ 2,2 = (2 (-2)-1 1) = -5

A 2,3 = (-1) 2+3
2 -2
1 0
∆ 2,3 = -(2 0-1 (-2)) = -2

A 3,1 = (-1) 3+1
-2 1
1 2
∆ 3,1 = (-2 2-1 1) = -5

·
3
-2
-1

X T = (1,0,1)
x 1 = -21 / -21 = 1
x 2 = 0 / -21 = 0
x 3 = -21 / -21 = 1
Проверка:
2 1+3 0+1 1 = 3
-2 1+1 0+0 1 = -2
1 1+2 0+-2 1 = -1

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Учитывая определение обратной матрицы, имеем A −1 A =E , где E - единичная матрица. Следовательно (4) можно записать так:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b .

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Матричный вид записи системы линейных уравнений: Ax=b , где

Вычислим все алгебраические дополнения матрицы A :

,
,
,
,
,

где A ij − алгебраическое дополнение элемента матрицы A , находящиеся на пересечении i -ой строки и j -ого столбца, а Δ − определитель матрицы A .

Используя формулу обратной матрицы, получим:

В первой части мы рассмотрели немного теоретического материала, метод подстановки, а также метод почленного сложения уравнений системы. Всем, кто зашел на сайт через эту страницу рекомендую ознакомиться с первой частью. Возможно, некоторым посетителям покажется материал слишком простым, но по ходу решения систем линейных уравнений я сделал ряд очень важных замечаний и выводов, касающихся решения математических задач в целом.

А сейчас мы разберём правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Все материалы изложены просто, подробно и понятно, практически все читатели смогут научиться решать системы вышеуказанными способами.

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.

Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце



Понравилась статья? Поделиться с друзьями: