Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин

Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).


Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.


Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.


Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.


Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.

2. Термодинамические циклы холодильных установок

Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.


Чтобы отводимая от «холодного» источника теплота могла быть отдана «горячему» источнику (обычно - окружающему воздуху), необходимо поднять температуру рабочего тела выше температуры окружающей среды. Это достигается быстрым (адиабатным) сжатием рабочего тела с затратой работы или подводом к нему теплоты извне.


В обратных циклах количество отводимой от рабочего тела теплоты всегда больше количества подводимой теплоты, а суммарная работа сжатия больше суммарной работы расширения. Благодаря этому установки, работающие по подобным циклам, являются потребителями энергии. Такие идеальные термодинамические циклы холодильных установок уже рассмотрены выше в пункте 10 темы 3. Холодильные установки различаются применяемым рабочим телом и принципом действия. Передача теплоты от «холодного» источника «горячему» может осуществляться за счет затраты работы или же затрат теплоты.

2.1. Воздушные холодильные установки

В воздушных холодильных установках в качестве рабочего тела используется воздух, а передача теплоты от «холодного» источника «горячему» осуществляется за счет затраты механической энергии. Необходимое для охлаждения холодильной камеры понижение температуры воздуха достигается в этих установках в результате быстрого его расширения, при котором время на теплообмен ограничено, и работа в основном совершается за счет внутренней энергии, в связи, с чем температура рабочего тела падает. Схема воздушной холодильной установки показана на рис 7.14



Рис. 14. : ХК - холодильная камера; К - компрессор; ТО - теплообменник; Д - расширительный цилиндр (детандер)


Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 - 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается - теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра - детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.

2.2. Парокомпрессорные холодильные установки

В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.


Таблица 1.



В XX веке в качестве хладагентов широко применяли различные фреоны на основе фторхлоруглеродов. Они вызывали активное разрушение озонового слоя, в связи, с чем в настоящее время их применение ограничено, и в качестве основного хладагента используют хладагент К- 134А (открыт в 1992 году) на основе этана. Его термодинамические свойства близки к свойствам фреона К-12. У обоих хладагентов несущественно различаются молекулярные массы, теплоты парообразования и температуры кипения, но, в отличие от К-12, хладагент К-134А не агрессивен по отношению к озоновому слою Земли.


Схема ПКХУ и цикл в T-s-координатах показаны на рис. 15 и 16. В ПКХУ понижение давления и температуры осуществляется дросселированием хладагента при его протекании через редукционный вентиль РВ, проходное сечение которого может изменяться.


Хладагент из холодильной камеры ХК поступает в компрессор К, в котором адиабатно сжимается в процессе 1 -2. Образующийся при этом сухой насыщенный пар поступает в КД, где конденсируется при постоянных значениях давления и температуры в процессе 2-3. Выделяющаяся теплота q1 отводится к «горячему» источнику, которым в большинстве случаев является окружающий воздух. Образовавшийся конденсат дросселируется в редукционном вентиле РВ с переменным проходным сечением, что позволяет изменять давление выходящего из него влажного пара (процесс 3-4).





Рис. 15. Принципиальная схема (а) и цикл в T-s-координатах (б) парокомпрессорной холодильной установки : КД - конденсатор; К - компрессор; ХК - холодильная камера; РВ - редукционный вентиль


Поскольку протекающий при неизменном значении энтальпии (h3 - h) процесс дросселирования необратим, его изображают пунктирной линией. Полученный в результате процесса влажный насыщенный пар небольшой степени сухости попадает в теплообменник холодильной камеры, где при постоянных значениях давления и температуры испаряется за счет теплоты q2b отбираемой от находящихся в камере предметов (процесс 4-1).




Рис. 16. : 1 - холодильная камера; 2 - теплоизоляция; 3 - компрессор; 4 - сжатый горячий пар; 5 - теплообменник; 6 - охлаждающий воздух или охлаждающая вода; 7 - жидкий хладагент; 8 - дроссельный вентиль (расширитель); 9 - расширившаяся, охлажденная и частично испарившаяся жидкость; 10 - охладитель (испаритель); 11 - испарившийся теплоноситель


В результате «подсушивания» степень сухости хладагента растет. Количество теплоты, отбираемой у охлаждаемых в холодильной камере предметов, в Т-Б-координатах определяется площадью прямоугольника под изотермой 4-1.


Использование в ПКХУ легкокипящих жидкостей в качестве рабочего тела позволяет приблизиться к обратному циклу Карно.


Вместо дросселирующего вентиля для понижения температуры можно использовать и расширительный цилиндр - детандер (см. рис. 14). При этом установка будет работать по обратному циклу Карно (12-3-5-1). Тогда теплота, отбираемая у охлаждаемых предметов, будет большей - она определится площадью под изотермой 5-4-1. Несмотря на частичную компенсацию затрат энергии на привод компрессора положительной работой, получаемой при расширении хладагента в расширительном цилиндре, такие установки не применяют ввиду их конструктивной сложности и больших габаритных размеров. К тому же в установках с дросселем переменного сечения гораздо проще регулировать температуру в холодильной камере.




Рис 17.


Для этого достаточно лишь изменить площадь проходного сечения дросселирующего вентиля, что приводит к изменению давления и соответствующей ему температуры насыщенных паров хладагента на выходе из вентиля.


В настоящее время вместо поршневых компрессоров в основном используют лопаточные компрессоры (рис. 18). О большей экономичности ПКХУ по сравнению с воздушными установками свидетельствует и тот факт, что отношение холодильных коэффициентов ПКХУ и обратного цикла Карно

В реальных парокомпрессорных установках из теплообменника- испарителя холодильной камеры в компрессор поступает не влажный, а сухой или даже перегретый пар (рис. 17). Это увеличивает отводимую теплоту q2, уменьшает интенсивность теплообмена хладагента со стенками цилиндра и улучшает условия смазывания поршневой группы компрессора. В подобном цикле в конденсаторе происходит некоторое переохлаждение рабочего тела (участок изобары 4-5).





Рис. 18.

2.3. Пароэжекторные холодильные установки

Цикл пароэжекторной холодильной установки (рис. 19 и 20) также осуществляют за счет затраты тепловой, а не механической энергии.




Рис. 19. : ХК - холодильная камера; Э - эжектор; КД - конденсатор; РВ - редукционный вентиль; Н - насос; КА - котельный агрегат





Рис. 20.


При этом компенсирующим является самопроизвольный перенос теплоты от более нагретого тела к менее нагретому телу. В качестве рабочего тела может использоваться пар любой жидкости. Однако обычно используют самый дешевый и доступный хладагент - водяной пар при низких значениях давления и температуры.


Из котельной установки пар поступает в сопло эжектора Э. При истечении пара с большой скоростью в камере смешения за соплом создается разрежение, под действием которого в камеру смешения подсасывается хладагент из холодильной камеры ХК. В диффузоре эжектора скорость смеси уменьшается, а давление и температура растут. Затем паровая смесь поступает в конденсатор КД, где превращается в жидкость в результате отведения в окружающую среду теплоты q1. В связи с многократным уменьшением удельного объема в процессе конденсации давление понижается до значения, при котором температура насыщения приблизительно равна 20 °С. Одна часть конденсата перекачивается насосом Н в котельный агрегат КА, а другая - подвергается дросселированию в вентиле РВ, в результате чего при понижении давления и температуры образуется влажный пар с небольшой степенью сухости. В теплообменнике-испарителе ХК этот пар подсушивается при постоянной температуре, отбирая теплоту q2 у охлаждаемых предметов, а затем вновь поступает в паровой эжектор.


Поскольку затраты механической энергии на перекачивание жидкой фазы в абсорбционных и пароэжекторных холодильных установках крайне малы, ими пренебрегают, и эффективность таких установок оценивают коэффициентом теплоиспользования, представляющим собой отношение отбираемой от охлаждаемых предметов теплоты к теплоте, используемой для реализации циклов.


Для получения низких температур в результате переноса теплоты к «горячему» источнику принципиально могут использовать и иные принципы. Например, температуру можно понижать в результате испарения воды. Этот принцип применяют в условиях жаркого и сухого климата в испарительных кондиционерах.

3. Бытовые и промышленные холодильники

Холодильник - устройство, поддерживающее низкую температуру в теплоизолированной камере. Обычно их применяют для хранения пищи и других предметов, требующих хранения в холодном месте.


На рис. 21 показана схема работы однокамерного холодильника, а на рис. 22 - назначение основных частей холодильника.





Рис. 21.




Рис. 22.


Работа холодильника основана на применении теплового насоса, переносящего теплоту из рабочей камеры холодильника наружу, где оно отдается внешней среде. В промышленных холодильниках объём рабочей камеры может достигать десятков и сотен м3.


Холодильники могут быть двух видов: среднетемпературные камеры для хранения продуктов и низкотемпературные морозильники. Однако в последнее время наибольшее распространение получили двухкамерные холодильники, включающие в себя оба компонента.


Холодильники бывают четырех типов: 1 - компрессионные; 2 - абсорбционные; 3 - термоэлектрические; 4 - с вихревыми охладителями.



Рис. 23. : 1 - конденсатор; 2 - капилляр; 3 - испаритель; 4 - компрессор



Рис. 24.


Основными составляющими частями холодильника являются:


1 - компрессор, получающий энергию от электрической сети;


2 - конденсатор, находящийся снаружи холодильника;


3 - испаритель, находящийся внутри холодильника;


4 - терморегулирующий расширительный вентиль (ТРВ), являющийся дросселирующим устройством;


5 - хладагент (циркулирующее в системе вещество с определёнными физическими характеристиками - обычно им является фреон).

3.1. Принцип работы компрессионного холодильника

Теоретической основой, на которой построен принцип работы холодильников, схема которых показана на рис. 23, является второе начало термодинамики. Охлаждающий газ в холодильниках совершает так называемый обратный цикл Карно . При этом основная передача теплоты основана не на цикле Карно, а на фазовых переходах - испарении и конденсации. В принципе возможно создание холодильника использующего только цикл Карно, но при этом для достижения высокой производительности потребуется или компрессор, создающий очень высокое давление, или очень большая площадь охлаждающего и нагревающего теплообменника.


Хладагент поступает в испаритель под давлением через дросселирующее отверстие (капилляр или ТРВ), где за счёт резкого уменьшения давления происходит испарение жидкости и превращение ее в пар. При этом хладагент отнимает теплоту у внутренних стенок испарителя, за счёт чего происходит охлаждение внутреннего пространства холодильника. Компрессор засасывает из испарителя хладагент в виде пара, сжимает его, за счёт чего температура хладагента повышается и выталкивает в конденсатор. В конденсаторе нагретый в результате сжатия хладагент остывает, отдавая теплоту во внешнюю среду, и конденсируется , т.е. превращается в жидкость. Процесс повторяется вновь. Таким образом, в конденсаторе хладагент (обычно им является фреон) под воздействием высокого давления конденсируется и переходит в жидкое состояние, выделяя теплоту, а в испарителе под воздействием низкого давления хладагент вскипает и переходит в газообразное, поглощая теплоту.


Терморегулирующий вентиль (ТРВ) необходим для создания необходимой разности давлений между конденсатором и испарителем, при которой происходит цикл теплопередачи. Он позволяет правильно (наиболее полно) заполнять внутренний объем испарителя вскипевшим хладагентом. Пропускное сечение ТРВ изменяется по мере снижения тепловой нагрузки на испаритель, причем при понижении температуры в камере количество циркулирующего хладагента уменьшается. Капилляр - это аналог ТРВ. Он не меняет свое сечение, а дросселирует определенное количество хладагента, зависящее от давления на входе и выходе капилляра, его диаметра и типа хладагента.


При достижении необходимой температуры температурный датчик размыкает электрическую цепь и компрессор останавливается. При повышении температуры (за счёт внешних факторов) датчик вновь включает компрессор.

3.2. Принцип работы абсорбционного холодильника

В абсорбционном водо-аммиачном холодильнике используется свойство одного из широко распространённых хладагентов - аммиака - хорошо растворяться в воде (до 1000 объёмов аммиака на 1 объём воды). Принцип работы абсорбционной холодильной установки показан на рис. 26, а ее принципиальная схема - на рис. 27.



Рис. 26.



Рис. 27. : ГП - генератор пара; КД - конденсатор; РВ1, РВ2 - редукционные вентили; ХК - холодильная камера; Аб - абсорбер; Н - насос


В этом случае требуемое для любого испарительного холодильника удаление газообразного хладагента из змеевика испарителя ведут поглощением его водой, раствор аммиака в которой затем перекачивают в специальную ёмкость (десорбер/генератор) и там подвергают разложению на аммиак и воду путём нагрева. Пары аммиака и воды из неё под давлением поступают в устройство разделения (ректификационная колонна), где пары аммиака отделяются от воды. Далее практически чистый аммиак попадает в конденсатор, где, охлаждаясь, конденсируется и через дроссель снова поступает в испаритель для испарения. Такая тепловая машина может использовать для перекачки раствора хладагента разнообразные приспособления, в том числе и струйные насосы, и не иметь движущихся механических частей. Помимо аммиака и воды, могут использоваться и другие пары веществ - например, раствор бромистого лития, ацетилен и ацетон. Преимущества абсорбционных холодильников - бесшумность работы, отсутствие движущихся механических частей, возможность работы от нагрева прямым сжиганием топлива, недостаток - низкая холодопроизводительность на единицу объёма.

3.3. Принцип работы термоэлектрического холодильника

Существуют устройства, основанные на эффекте Пельтье, заключающемся в поглощении теплоты одним из спаев термопар (разнородных проводников) при выделении ее на другом спае в случае пропускания через них тока. Этот принцип используют, в частности, в сумках-кулерах. Возможно как понижение, так и повышение температуры с помощью предложенных французским инженером Ранком вихревых трубок, в которых температура существенно изменяется по радиусу движущегося в них закрученного вихревого воздушного потока.


Термоэлектрический холодильник основан на элементах Пельтье. Он бесшумен, но распространен мало из-за дороговизны охлаждающих термоэлектрических элементов. Однако небольшие автомобильные холодильники и охладители питьевой воды часто производят с охлаждением от элементов Пельтье.

3.4. Принцип работы холодильника на вихревых охладителях

Охлаждение осуществляется за счёт расширения предварительно сжатого компрессором воздуха в блоках специальных вихревых охладителей. Они распространены мало из-за большой шумности, необходимости подвода сжатого (до 1,0-2,0 МПа) воздуха и очень большого его расхода, низкого КПД. Достоинства - большая безопасность (не используется электричество, нет движущихся частей и опасных химических соединений), долговечность и надёжность.

4. Примеры холодильных установок

Некоторые схемы и описания холодильных установок различного назначения, а также их фотографии показаны на рис. 27-34.



Рис. 27.





Рис. 28.





Рис. 29.



Рис 32.



Рис. 33.


Например, холодильные установки компрессорно-конденсаторные (тип АКК) или компрессорно-рессиверные (тип АКР), показанные на рис. 34, предназначены для работы c поддержанием температуры от +15 °С до -40 °С в камерах объёмом от 12 до 2500 м3.


В состав холодильной установки входят: 1 - компрессорно-конденсаторный или компрессорно -рессиверный агрегат; 2 - воздухоохладитель; 3 - терморегулирующий вентиль (ТРВ); 4 - соленоидный вентиль; 5 - щит управления.





Машинный способ является наиболее распространенным способом получения холода за счет изменения агрегатного состояния рабочего вещества, кипения его при низких температурах, с отводом от охлаждаемого тела или среды необходимой для этого теплоты парообразования.

Одним из условий эффективной работы торгового холодильного оборудования является применение в качестве рабочих веществ холодильных агентов, обладающих хорошими термодинамическими, теплофизическими, физико-химическими, физиологическими и озонобезопасными свойствами. Важное значение имеют также их стоимость и доступность. Холодильные агенты не должны быть ядовиты, вызывать удушья и раздражения слизистых оболочек глаз, носа и дыхательных путей человека.

Различают естественные и искусственные холодильные агенты. К естественным хладагентам относятся: аммиак (R717), воздух (R729), вода (R718), углекислота (R744) и др., к искусственным - хладоны (смеси различных фреонов).

В настоящее время существует три типа фторуглеводородных хладагентов:

хлорфторуглероды (CFC), обладающие высоким потенциалом истощения озона. Например: R12, R13, R502, R503;

гидрохлорфторуглероды (HCFC), которые содержат атомы водорода, что приводит к более короткому периоду существования этих хладагентов в атмосфере по сравнению с CFC, например хладагент R22;

гидрофторуглероды (HFC), которые не содержат хлора. Они не разрушают озоновый слой Земли и имеют короткий период существования в атмосфере. Например: R134A, R404A.

В связи с этим проблема использования в качестве хладагентов природных веществ, и в первую очередь аммиака, наиболее актуальна сейчас у производителей холодильного оборудования. В России потребность в холоде для стационарных холодильников в основном обеспечивается аммиачными холодильными установками, так как аммиак не разрушает озоновый слой, не оказывает прямого воздействия на глобальный тепловой эффект, обладает отличными термодинамическими свойствами, имеет высокий коэффициент теплоотдачи при кипении и конденсации и доступность производства.

К негативным свойствам аммиака относятся токсичность, пожаро- и взрывоопасность, резкий неприятный запах. Любая авария с аммиаком ведет к серьезным последствиям.

В торговле в основном используют компрессионные холодильные машины, которые состоят из следующих основных узлов: компрессора, конденсатора воздушного охлаждения, терморегулирующего вентиля (ТРВ) и испарителя. Холодильная машина, кроме перечисленных основных частей, имеет приборы автоматики, фильтры, осушители, теплообменники и т.п.

Компрессор - наиболее сложный и важный узел холодильной машины. Он служит для отсасывания паров хладагента из испарителя, сжатия и нагнетания в конденсатор. Основным показателем работы компрессора является его холодопроизводительность (количество теплоты, которое холодильная машина получает за единицу времени от охлаждаемой среды).

Конденсатор воздушного охлаждения - теплообменный аппарат, в котором поступающий из компрессора парообразный хладагент превращается в жидкость. Этот процесс протекает при отдаче хладагентом теплоты во внешнюю среду.

Испаритель - теплообменный аппарат, осуществляющий отбор тепла от охлаждаемой среды.

Терморегулирующий вентиль служит для автоматической подачи необходимого количества хладагента в испаритель. Он контролирует и поддерживает заданную температуру паров хладона на выходе из испарителя.

Приборы автоматики обеспечивают пуск, остановку холодильной машины, защиту ее от перегрузок, поддержание заданного температурного режима в охлаждаемой среде, оптимальное заполнение испарителя хладагентов, своевременное оттаивание снеговой шубы с испарителей.

Реле давления автоматически поддерживает заданное давление на линии всасывания путем включения и выключения компрессора.

Ресивер - резервуар, который собирает жидкий хладагент в целях обеспечения его равномерного поступления к ТРВ и в испаритель. Фильтр служит для удаления механических загрязнений. Осушитель предназначен для поглощения влаги из хладагента при заполнении им системы и во время эксплуатации машины. Теплообменник служит для перегрева паров хладагента, идущих от испарителя к компрессору, и переохлаждения хладагента, идущего от конденсатора к ТРВ.

Принцип действия холодильной машины заключается в следующем.

1. В испарителе, установленном в охлаждающем объеме, происходит кипение жидкого хладагента при низком давлении и температуре за счет отбора тепла из окружающей среды.

2. Из испарителя пары хладона проходят через теплообменник и паровой фильтр, затем они отсасываются компрессором, сжимаются и в перегретом состоянии нагнетаются в конденсатор, при этом температура и давление повышаются.

3. В охлаждаемом воздухом конденсаторе они конденсируются, т.е. превращаются в жидкость.

4. Жидкий хладон стекает по трубам конденсатора и скапливается в ресивере, откуда под давлением проходит через жидкостный фильтр и теплообменник.

5. Очищенный хладон, проходя через узкое отверстие ТРВ, дросселируется, распыляется и при резком снижении температуры и давления поступает в испаритель.

Цикл повторяется. Циркулируя по такому замкнутому кругу, хладагент попеременно меняет свое агрегатное состояние, т. е. происходит скачкообразный переход хладагента из жидкого состояния в газообразное и наоборот.

В настоящее время в торговом холодильном оборудовании используются различные системы холодоснабжения: встроенные, выносные и централизованные.

Теплопритоки в торговые залы магазинов от встроенных в оборудование холодильных агрегатов приводят к снижению товарооборота и росту непредусмотренных расходов, в том числе:

создаются некомфортные для покупателей условия (высокая температура воздуха в торговом зале и высокий уровень шума, неприятные посторонние запахи);

некомфортные для продавцов и обслуживающего персонала условия приводят к снижению качества обслуживания, падает имидж предприятия и уменьшается товарооборот;

срок службы встроенных холодильных агрегатов в 2...3 раза ниже, чем при использовании систем выносного холодоснабжения, и в 4...6 раз ниже, чем при использовании централей;

происходят частые выходы из строя оборудования;

возникают дополнительные расходы на кондиционирование и на энергопотребление.

Выносное холодоснабжение представляет собой систему холодоснабжения на базе автономных компрессорно-конденсаторных агрегатов, расположенных в машинном отделении и изолированных от торговых помещений. При этом каждый агрегат может обеспечивать холодом нескольких потребителей.

Одним из важнейших условий эффективного развития предприятий торговли является использование централизованных систем холодоснабжения, представляющих собой несколько параллельно включенных компрессоров на единой раме с дополнительным оборудованием. Каждый центральный агрегат оборудован микропроцессорным блоком управления, осуществляющим регулирование холодопроизводительности агрегата и обеспечивающим равномерную работу каждого компрессора и конденсатора.

Основные достоинства использования централизованной системы холодоснабжения следующие:

центральные агрегаты компактны и занимают значительно меньше места;

достигается заметная экономия электроэнергии, так как крупные компрессоры имеют более высокий коэффициент полезного действия;

для крупных супермаркетов централизованная система холодоснабжения экономически выгоднее традиционного варианта холодоснабжения; увеличивается товарооборот;

обеспечивается высокая надежность за счет использования нескольких компрессоров;

в случае выхода из строя одного или несколько компрессоров остальные компрессоры обеспечат поддержание требуемой температуры для предотвращения потери продукции до устранения неисправности;

Основные понятия, связанные с работой холодильной машины

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.

Например, фреон R-22, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения минус 4°,8°С.

Если жидкий фреон находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине фреон кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя фреон активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Рассмотрим процесс конденсации паров жидкости на примере фреона R-22. Температура конденсации паров фреона, так же, как и температура кипения, зависит от давления окружающей среды. Чем выше давление, тем выше температура конденсации. Так, например, конденсация паров фреона R-22 при давлении 23 атм начинается уже при температуре плюс 55°С. Процесс конденсации фреоновых паров, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения фреона в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно “подливать” в испаритель жидкий фреон, а в конденсатор постоянно подавать пары фреона. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

Наиболее обширный класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) высокое давление порядка 20-23 атм.

Теперь, когда рассмотрены основные понятия, связанные с работой холодильной машины, перейдем к более подробному рассмотрению схемы компрессионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.

Рис. 1. Схема компрессионного цикла охлаждения

Кондиционер – это та же холодильная машина, предназначенная для тепловлажностной обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией и многочисленными дополнительными опциями. Обработка воздуха предполагает придание ему определенных кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения). Остановимся на принципе работы и физических процессах, происходящих в холодильной машине (кондиционере). Охлаждение в кондиционере обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация – при высоком давлении и высокой температуре. Принципиальная схема компрессионного цикла охлаждения показана на рис. 1.

Начнем рассмотрение работы цикла с выхода испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 15-25 атм и температуру до плюс 70-90°С (участок 2-2).

Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, то есть переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением в зависимости от типа холодильной системы.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно плюс 4-7°С.

При этом температура конденсации примерно на 10-20°С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается, часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4).

Жидкость кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента испаряются и в компрессор не попадает жидкость. Следует отметить, что в случае попадания жидкого хладагента в компрессор, так называемого “гидравлического удара”, возможны повреждения и поломки клапанов и других деталей компрессора.

Перегретый пар выходит из испарителя (точка 1), и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определенных уровня давления. Граница между ними проходит через нагнетательный клапан на выходе компрессора с одной стороны и выход из регулятора потока (из капиллярной трубки) с другой стороны.

Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений в холодильной машине.

На стороне высокого давления находятся все элементы, работающие при давлении конденсации.

На стороне низкого давления находятся все элементы, работающие при давлении испарения.

Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Теоретический и реальный цикл охлаждения.

Риc. 2. Диаграмма давления и теплосодержания

Цикл охлаждения можно представить графически в виде диаграммы зависимости абсолютного давления и теплосодержания (энтальпии). На диаграмме (рис. 2) представлена характерная кривая отображающая процесс насыщения хладагента.

Левая часть кривой соответствует состоянию насыщенной жидкости, правая часть – состоянию насыщенного пара. Две кривые соединяются в центре в так называемой “критической точке”, где хладагент может находиться как в жидком, так и в парообразном состоянии. Зоны слева и справа от кривой соответствуют переохлажденной жидкости и перегретому пару. Внутри кривой линии помещается зона, соответствующая состоянию смеси жидкости и пара.

Рис. 3. Изображение теоретического цикла сжатия на диаграмме «Давление и теплосодержание»

Рассмотрим схему теоретического (идеального) цикла охлаждения с тем, чтобы лучше понять действующие факторы (рис. 3).

Рассмотрим наиболее характерные процессы, происходящие в компрессионном цикле охлаждения.

Сжатие пара в компрессоре.

Холодный парообразный насыщенный хладагент поступает в компрессор (точка С`). В процессе сжатия повышаются его давление и температура (точка D). Теплосодержание также повышается на величину, определяемую отрезком НС`-HD, то есть проекцией линии C`-D на горизонтальную ось.

Конденсация.

В конце цикла сжатия (точка D) горячий пар поступает в конденсатор, где начинается его конденсация и переход из состояния горячего пара в состояние горячей жидкости. Этот переход в новое состояние происходит при неизменных давлении и температуре. Следует отметить, что, хотя температура смеси остается практически неизменной, теплосодержание уменьшается за счет отвода тепла от конденсатора и превращения пара в жидкость, поэтому он отображается на диаграмме в виде прямой, параллельной горизонтальной оси.

Процесс в конденсаторе происходит в три стадии: снятие перегрева (D-E ), собственно конденсация (Е-А) и переохлаждение жидкости (А-А`).

Рассмотрим кратко каждый этап.

Снятие перегрева (D-E ).

Это первая фаза, происходящая в конденсаторе, и в течение ее температура охлаждаемого пара снижается до температуры насыщения или конденсации. На этом этапе происходит лишь отъем излишнего тепла и не происходит изменение агрегатного состояния хладагента.

На этом участке снимается примерно 10-20% общего теплосъема в конденсаторе.

Конденсация (Е-А).

Температура конденсации охлаждаемого пара и образующейся жидкости сохраняется постоянной на протяжении всей этой фазы. Происходит изменение агрегатного состояния хладагента с переходом насыщенного пара в состояние насыщенной жидкости. На этом участке снимается 60-80% теплосъема.

Переохлаждение жидкости (А-А`).

На этой фазе хладагент, находящийся в жидком состоянии, подвергается дальнейшему охлаждению, в результате чего его температура понижается. Получается переохлажденная жидкость (по отношению к состоянию насыщенной жидкости) без изменения агрегатного состояния.

Переохлаждение хладагента дает значительные энергетические преимущества: при нормальном функционировании понижение температуры хладагента на один градус соответствует повышению мощности холодильной машины примерно на 1% при том же уровне энергопотребления.

Количество тепла, выделяемого в конденсаторе.

Участок D-A` соответствует изменению теплосодержания хладагента в конденсаторе и характеризует количество тепла, выделяемого в конденсаторе.

Регулятор потока (А`-B).

Переохлажденная жидкость с параметрами в точке А` поступает на регулятор потока (капиллярную трубку или терморегулирующий расширительный клапан), где происходит резкое снижение давления. Если давление за регулятором потока становится достаточно низким, то кипение хладагента может происходить непосредственно за регулятором, достигая параметров точки В.

Испарение жидкости в испарителе (В-C).

Смесь жидкости и пара (точка В) поступает в испаритель, где она поглощает тепло от окружающей среды (потока воздуха) и переходит полностью в парообразное состояние (точка С). Процесс идет при постоянной температуре, но с увеличением теплосодержания.

Как уже говорилось выше, парообразный хладагент несколько перегревается на выходе испарителя. Главная задача фазы перегрева (С-С`) – обеспечение полного испарения остающихся капель жидкости, чтобы в компрессор поступал только парообразный хладагент. Для этого требуется повышение площади теплообменной поверхности испарителя на 2-3% на каждые 0,5°С перегрева. Поскольку обычно перегрев соответствуют 5-8°С, то увеличение площади поверхности испарителя может составлять около 20%, что безусловно оправдано, так как увеличивает эффективность охлаждения.

Количество тепла, поглощаемого испарителем.

Участок HB-НС` соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.

Реальный цикл охлаждения.

Рис. 4. Изображение цикла реального сжатия на диаграмме «Давление-теплосодержание»
C`L: потеря давления при всасывании
MD: потеря давления при выходе
HDHC`: теоретический термический эквивалент сжатия
HD`HC`: реальный термический эквивалент сжатия
C`D: теоретическое сжатие
LM: реальное сжатие

В действительности в результате потерь давления, возникающих на линии всасывания и нагнетания, а также в клапанах компрессора, цикл охлаждения отображается на диаграмме несколько иным образом (рис. 4).

Из-за потерь давления на входе (участок C`-L) компрессор должен производить всасывание при давлении ниже давления испарения.

С другой стороны, из-за потерь давления на выходе (участок М-D`), компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации.

Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла.

Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.

Во-первых, процесс сжатия в компрессоре отличается от адиабатического, поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.

Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.

В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.

Оценка эффективности цикла охлаждения

Эффективность цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.

Коэффициент эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (НD-НС).

Фактически он представляет собой соотношение холодильной мощности и электрической мощности, потребляемой компрессором.

Причем он не является показателем производительности холодильной машины, а представляет собой сравнительный параметр при оценке эффективности процесса передачи энергии. Так, например, если холодильная машина имеет коэффициент термической эффективности, равный 2,5, то это означает, что на каждую единицу электроэнергии, потребляемую холодильной машиной, производится 2,5 единицы холода.

Пока техника исправно функционирует, пользователя не интересует, как она устроена. Знания о том, как работает холодильник, понадобятся, когда возникла поломка: помогут избежать серьезной неисправности или быстро определить место. Правильная эксплуатация также во многом зависит от осведомленности пользователя. В статье рассмотрим устройство бытового холодильника и его работу.

Как устроен компрессорный холодильник

«Атлант», «Стинол», «Индезит» и другие модели оснащаются компрессорами, которые запускают процесс охлаждения в камере.

Основные составляющие части:

  • Компрессор (мотор). Бывает инверторным и линейным. Благодаря запуску мотора фреон передвигается по трубкам системы, обеспечивая охлаждение в камерах.
  • Конденсатор - это трубки на задней стенке корпуса (в последних моделях может размещаться сбоку). Тепло, которое вырабатывает компрессор во время работы, конденсатор отдает окружающей среде. Так холодильник не перегревается.

Вот почему производители запрещают устанавливать технику возле батарей, радиаторов и печей. Тогда перегрева не избежать, и мотор быстро выйдет из строя .

  • Испаритель. Здесь фреон закипает и переходит в газообразное состояние. При этом забирается большое количество тепла, трубки в камере охлаждаются вместе с воздухом в отделении.
  • Вентиль для терморегуляции. Поддерживает заданное давление для движения хладагента.
  • Хладагент - это газ-фреон или изобутан. Он циркулирует по системе, способствуя охлаждению в камерах.

Важно правильно понимать, как работает техника: она не вырабатывает холод. Воздух охлаждается благодаря отбору тепла и его отдаче окружающему пространству. Фреон проходит в испаритель, поглощает тепло и переходит в парообразное состояние. Двигатель приводит в действие поршень мотора. Последний сжимает фреон и создает давление для его перегонки по системе. Попадая в конденсатор, хладагент остывает (тепло выходит наружу), превращаясь в жидкость.

Чтобы установить нужный температурный режим в камерах, устанавливается терморегулятор. В моделях с электронным управлением (LG, «Самсунг», «Бош») достаточно выставить значения на панели.

Переходя в фильтр-осушитель, хладагент избавляется от влаги и проходит по трубкам капилляра. После чего снова попадает в испаритель. Мотор перегоняет фреон и повторяет цикл, пока в отделении не установится оптимальная температура. Как только это случится, плата управления посылает сигнал пускозащитному реле, которое отключает двигатель.

Однокамерный и двухкамерный холодильник

Несмотря на одинаковое строение, различия в принципе работы все-таки есть. Старые двухкамерные модели оснащены одним испарителем для обеих камер. Поэтому, если при разморозке механически убирать наледь и задеть испаритель, из строя выйдет весь холодильник.

Новый двухкамерный шкаф имеет два отделения, каждый из которых оснащен испарителем. Обе камеры изолированы друг от друга. Обычно в таких случаях морозилка находится снизу, а холодильный отсек - сверху.

Поскольку в холодильнике есть зоны с нулевой температурой (читайте, что такое зона свежести в холодильнике), фреон охлаждается в морозилке до определенного уровня, а затем перемещается в верхнее отделение. Как только показатели достигают нормы, срабатывает терморегулятор, и пусковое реле отключает мотор.

Наиболее востребованы приборы с одим мотором, хотя с двумя компрессорами также набирают популярность. Последние функционируют так же, просто за каждую камеру отвечает отдельный компрессор.

Но не только в двухкамерной технике можно отдельно устанавливать температуру. Есть такие приборы («Минск» 126, 128 и 130), где установлены электромагнитные клапаны. Они перекрывают подачу фреона в отделение холодильника. Исходя из показаний регулятора температуры выполняется охлаждение.

Более сложная конструкция предусматривает размещение специальных датчиков, которые измеряют температуру снаружи и регулируют ее внутри камеры.

Как долго работает компрессор

Точные показания не указаны в инструкции. Главное, чтобы мощности мотора хватало на нормальную заморозку продукции. Существует общий коэффициент работы: если прибор функционирует 15 минут и 25 минут отдыхает, тогда 15/(15+25) = 0,37.

Если подсчитанные показатели оказались менее 0,2, значит нужно отрегулировать показания термореле. Более 0,6 указывает на нарушение герметичности камеры.

Абсорбционный холодильник

В данной конструкции рабочая жидкость (аммиак) испаряется. Хладагент циркулирует по системе благодаря растворению аммиака в воде. Затем жидкость переходит в десорбер, а потом в дефлегматор, где снова разделяется на воду и аммиак.

Холодильники данного типа редко используются в быту, поскольку в основе ядовитые компоненты.

Модели с No Frost и «плачущей» стенкой

Техника с системой Ноу Фрост сегодня на пике популярности. Потому что технология позволяет размораживать холодильник раз в год, только чтобы помыть. Особенности функционирования обеспечивают вывод влаги из системы, поэтому в камере не образуется лед и снег.

В морозильном отделении располагается испаритель. Холод, который он вырабатывает, распространяется по холодильному отделению с помощью вентилятора. В камере на уровне полок есть отверстия, куда выходит холодный поток и равномерно распределяется по отсеку.

После цикла работы запускается оттайка. Таймер запускает ТЭН испарителя. Наледь тает, и влага выводится наружу, где испаряется.

«Плачущий испаритель». Название основано на принципе, при котором во время работы компрессора на испарителе образуется наледь. Как только мотор отключается, лед тает, и конденсат стекает в сливное отверстие. Способ оттайки называется капельный.

Суперзаморозка

Функцию также называют «Быстрая заморозка». Она реализована во многих двухкамерных моделях «Хаер», «Бирюса», «Аристон». В электромеханических моделях режим запускается нажатием кнопки или поворотом регулятора. Компрессор начинает безостановочную работу до тех пор, пока продукты полностью не промерзнут как внутри, так и снаружи. После чего функцию нужно отключить.

Электронное управление автоматически отключает суперзаморозку, согласно сигналам термоэлектрических датчиков.

Электрическая схема

Чтобы самостоятельно отыскать причину неполадки, понадобится знание электрической схемы.

Ток, подающийся на схему, проходит такой путь:

  • идет через контакты термореле (1);
  • кнопки оттайки (2);
  • теплового реле (3);
  • пускозащитного реле (5);
  • подается на рабочую обмотку двигателя мотора (4.1).

Нерабочая обмотка двигателя пропускает напряжение больше заданного значения. При этом срабатывает пусковое реле, замыкает контакты и запускает обмотку. После достижения нужной температуры, контакты термореле размыкаются, и двигатель останавливает работу мотора.

Теперь вы понимаете устройство холодильника и как он должен работать. Это поможет правильно эксплуатировать прибор и продлить срок его использования.

Рефрижерация - это процесс, при котором температура помещения снижается ниже температуры наружного воздуха.

Кондиционирование воздуха - это регулирование температуры и влажности в помещении с одновременным осуществлением фильтрации воздуха, циркуляции и частичной его замены в помещении.

Вентиляция - это циркуляция и замена воздуха в помещении без изменения его температуры. За исключением специальных процессов, таких как замораживание рыбы, воздух обычно используется как промежуточное рабочее тело, передающее теплоту. Поэтому для осуществления рефрижерации, кондиционирования и вентиляции применяют вентиляторы и воздухопроводы. Три названные выше процесса тесно связаны между собой и совместно обеспечивают заданный микроклимат для людей, машин и груза.

Для снижения температуры в грузовых трюмах и в провизионных кладовых при рефрижерации применяют систему охлаждения работа которой обеспечивается холодильной машиной. Отобранная теплота передается другому телу - холодильному агенту при низкой температуре. Охлаждение воздуха при кондиционировании представляет собой аналогичный процесс.

В простейших схемах холодильных установок передача теплоты осуществляется дважды: сначала в испарителе, где холодильный агент, имеющий низкую температуру, отбирая теплоту от охлаждаемой среды, снижает ее температуру, затем в конденсаторе, где холодильный агент охлаждается, отдавая теплоту воздуху или воде. В наиболее распространенных схемах морских рефрижераторных установок (рис. 1) осуществляется паровой компрессионный цикл. В компрессоре давление пара холодильного агента повышается и соответственно повышается его температура.

Рис. 1. Схема паровой компрессорной холодильной установки: 1 - испаритель; 2 - термочувствительный баллон; 3 - компрессор; 4 - маслоотделитель; 5 - конденсатор; 6 - осушитель; 7 - трубопровод для масла; 8 - регулирующий вентиль; 9 - терморегулирующий вентиль.

Этот горячий пар, имеющий повышенное давление, нагнетается в конденсатор, где в зависимости от условий применения установки пар охлаждается воздухом или водой. Ввиду того что этот процесс осуществляется при повышенном давлении, пар полностью конденсируется. Жидкий холодильный агент направляется по трубопроводу к регулирующему вентилю, который регулирует подачу жидкого холодительного агента в испаритель, где поддерживается низкое давление. Воздух из охлаждаемого помещения или кондиционируемый воздух проходит через испаритель, вызывает кипение жидкого холодильного агента и сам, отдавая теплоту, при этом охлаждается. Подача холодильного агента в испаритель должна быть отрегулирована так, чтобы в испарителе весь жидкий холодильный агент выкипел, а пар слегка перегрелся перед тем, как он снова поступит при низком давлении в компрессор для последующего сжатия. Таким образом, теплота, которая была передана отвоздуха к испарителю, переносится холодильным агентом по системе до тех пор, пока не достигнет конденсатора, где она будет передана наружному воздуху или воде. В установках, где применяется конденсатор с воздушным охлаждением, как, например, в малой провизионной холодильной установке, должна быть предусмотрена вентиляция для отвода теплоты, выделенной в конденсаторе. Конденсаторы с водяным охлаждением с этой целью прокачивают пресной или забортной водой. Пресная вода применяется в тех случаях, когда и другие механизмы машинного отделения охлаждаются пресной водой, которая затем охлаждается забортной водой в централизованном водоохладителе. В этом случае из-за более высокой температуры воды, охлаждающей конденсатор, температура выходящей из конденсатора воды будет выше, чем при охлаждении конденсатора непосредственно забортной водой.

Холодильные агенты и хладоносители. Охлаждающие рабочие тела делятся в основном на первичные - холодильные агенты и вторичные - хладоносители.

Холодильный агент под воздействием компрессора циркулирует через конденсатор и испарительную систему. Холодильный агент должен обладать определенными свойствами, отвечающими предъявленным требованиям, например кипеть при низкой температуре и избыточном давлении и конденсироваться при температуре, близкой к температуре забортной воды, и умеренном давлении. Холодильный агент также должен быть нетоксичен, взрывобезопасен, негорюч, не вызывать коррозии. Некоторые холодильные агенты имеют низкую критическую температуру, т. е. температуру, выше которой пар холодильного агента не конденсируется. Это один из недостатков холодильных агентов, в частности углекислоты, которая применялась много лет на судах. Вследствие низкой критической температуры углекислоты значительно затруднялась эксплуатация судов с углекислотными холодильными установками в широтах с высокими температурами забортной воды и из-за этого приходилось использовать дополнительные охлаждающие конденсатор системы. Кроме того, к недостаткам углекислоты относится очень высокое давление, при котором система работает, что в свою очередь приводит к увеличению массы машины в целом. После углекислоты в качестве холодильных агентов определенное распространение имели хлористый метил и аммиак. В настоящее время хлористый метил на судах не применяется из-за его взрывоопасности. Аммиак имеет некоторое применение до сих пор, но ввиду высокой токсичности при его использовании необходимы специальные вентиляционные системы. Современные холодильные агенты - это соединения фторированного углеводорода, имеющие различные формулы, за исключением холодильного агента R502 (всоответствии с международным стандартом (MС) НСО 817 - для обозначения холодильных агентов применяется условное обозначение холодильного агента, которое состоит из символа R (refrigerant) и определяющего числа. В связи с этим при переводе введено обозначение холодильных агентов R.) , который представляет собой азеотропную (с фиксированной точкой кипения) смесь (специфическая смесь различных веществ, обладающая свойствами, отличными от свойств каждого вещества в отдельности. ) холодильных агентов R22 и R115. Эти холодильные агенты известны под названием фреоны (Согласно ГОСТ 19212 - 73 (изменение 1) для фреона установлено название хладон ), а каждый из них имеет определяющее число.

Холодильный агент R11 имеет очень низкое рабочее давление, для получения значительного охлаждающего эффекта необходима интенсивная циркуляция агента в системе. Преимущество этого агента особенно проявляется при использовании в установках кондиционирования воздуха, поскольку для воздуха требуются относительно малые затраты мощности.

Первым из фреонов, после того как они были открыты и стали доступны, получил широкое практическое применение фреон R12. К его недостаткам относится низкое (ниже атмосферного) давление кипения, в результате чего из-за любых неплотностей в системе появляется подсос в систему воздуха и влаги.

В настоящее время наиболее распространенным холодильным агентом является R22, благодаря которому обеспечивается охлаждение на достаточно низком температурном уровне при избыточном давлении кипения. Это позволяет получить некоторый выигрыш в объеме цилиндров компрессора установки и другие преимущества. Объем, описываемый поршнем компрессора, работающего на фреоне R22, составляет примерно 60% по сравнению с описываемым объемом поршня компрессора, работающего на фреоне R12 при тех же условиях.

Примерно такой же выигрыш получается при применении фреона R502. Кроме того, из-за более низкой температуры нагнетания компрессора уменьшается вероятность коксования смазочного масла и поломки нагнетательных клапанов.

Все названные холодильные агенты не вызывают коррозии и могут применяться в герметических и бессальниковых компрессорах. В меньшей степени воздействует на лаки и пластические материалы применяемый в электродвигателях и компрессорах холодильный агент R502. В настоящее время этот перспективный холодильный агент стоит еще достаточно дорого и поэтому не получил широкого применения.

Хладоносители применяются в крупных установках кондиционирования воздуха и в холодильных установках, охлаждающих грузы. В этом случае через испаритель циркулирует хладоноситель, который затем направляется в помещение, подлежащее охлаждению. Хладоноситель применяется тогда, когда установка велика и разветвлена, для того чтобы исключить необходимость в циркуляции в системе большого количества дорогостоящего холодильного агента, который имеет очень высокую проникающую способность, т. е. может проникать через малейшие неплотности, поэтому очень существенно свести к минимуму число соединений трубопроводов в системе. Для установок кондиционирования воздуха обычным хладоносителем является пресная вода, которая может иметь добавку раствора гликоля.

Наиболее распространенным хладоносителем в больших рефрижераторных установках является рассол - водный раствор хлористого кальция, к которому для уменьшения коррозии добавляют ингибиторы.



Понравилась статья? Поделиться с друзьями: