Основные закономерности влияния экологических факторов на организм. Общие закономерности действия факторов среды на организмы

Биотические факторы.

Биотические факторы - это совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую природу.

Классификация биотических взаимодействий:

1. Нейтрализм - ни одна популяция не влияет на другую.

2. Конкуренция - это использование ресурсов (пищи, воды, света, пространства) одним организмом, который тем самым уменьшает доступность этого ресурса ддя другого организма.

Конкуренция бывает внутривидовая и межвидовая. Если численность популяции невелика, то внутривидовая конкуренция выражена слабо и ресурсы имеются в изобилии. При высокой плотности популяции интенсивная внутривидовая конкуренция снижает наличие ресурсов до уровня, сдерживающего дальнейший рост, тем самым регулируется численность популяции.

Межвидовая конкуренция - взаимодействие между популяциями, которое неблагоприятно сказывается на их росте и выживаемости. При завозе в Британию из Северной Америки каролинской белки уменьшилась численность обыкновенной белки, т.к. каролинская белка оказалась более конкурентоспособной.

Конкуренция бывает прямая и косвенная.

Прямая - это внутривидовая конкуренция, связанная с борьбой за место обитания, в частности защита индивидуальных участков у птиц или животных, выражающейся в прямых столкновениях. При недостатке ресурсов возможно поедание животных особей своего вида (волки, рыси, хищные клопы, пауки, крысы, щука, окунь и т.д.)

Косвенная - между кустарниками и травянистыми растениями в Калифорнии. Тот вид, который обосновался первым, исключает другой тип. Быстро растущие травы с глубокими корнями снижали содержание влаги в почве до уровня непригодного для кустарников. А высокой кустарник затенял травы, не давая им произрастать из-за нехватки света.

Внутри хозяина. Вирусы, бактерии, примитивные грибы - растения. Глисты - животные. Высокая плодовитость. Не приводят к гибели хозяина, но угнетают процессы жизнедеятельности

4. Хищничество - поедание одного организма (жертвы) другим организмом (хищником).

Хищники могут поедать травоядных животных, и также слабых хищников. Хищники обладают широким спектром питания, легко переключаются с одной добычи на другую более доступную.

Хищники часто нападают на слабые жертвы. Норка уничтожает больных и старых ондатр, а на взрослых особей не нападает.

Поддерживается экологическое равновесие между популяциями жертва-хищник.

5. Симбиоз - сожительство двух организмов разных видов при котором организмы приносят друг другу пользу. По степени партнерства симбиоз бывает:

Комменсализм - один организм питается за счет другого, не нанося ему вреда. Рак - актиния. Актиния прикрепляется к раковине, защищая его от врагов, и питается остатками пищи.

Мутуализм - оба организма получают пользу, при этом они не могут существовать друг без друга. Лишайник - гриб + водоросль. Гриб защищает водоросль, а водоросль кормит его.

В естественных условиях один вид не приведёт к уничтожению другого вида.

Общие закономерности действия экологических факторов

В связи с чрезвычайным разнообразием экологических факторов различные виды организмов, испытывая их влияние, отвечают на него по-разному, тем не менее, можно выявить ряд общих законов (закономерностей) действия экологических факторов. Остановимся на некоторых из них.

1. Закон оптимума выражается в том, что любой экологический фактор имеет пределы положительного влияния на живые организмы.

Сила воздействия экологических факторов постоянно меняется. Лишь в определенных местах планеты значения некоторых из них более или менее постоянны (константны). Например: на дне океанов, в глубинах пещер сравнительно постоянны температурный и водный режимы, режим освещения.

Рассмотрим действие закона оптимума на конкретном примере: животные и растения плохо переносят и сильную жару, и сильные морозы, оптимальными для них являются средние температуры - так называемая зона оптимума. Чем сильнее отклонения от оптимума, тем в большей степени данный экологический фактор угнетает жизнедеятельность организма. Эта зона носит название зоны пессимума. В ней имеются критические точки - «максимальное значение фактора» и «минимальное значение фактора»; за их пределами наступает гибель организмов. Расстояние между минимальным и максимальным значениями фактора называют экологической валентностью или толерантностью организма (рис. 1).

Пример проявления данного закона: яйца аскарид развиваются при t° = 12-36°, а оптимальной для их развития является t° = 30°. То есть экологическая толерантность аскарид по температурному режиму составляет от 12° до 36°.

По характеру толерантности следующие виды:

Эврибионтные - имеющие широкую экологическую валентность по отношению к абиотическим факторам среды; делятся на эвритермные (выносящие значительные колебания температур), эврибатные (выносящие широкий диапазон показателей давления), эвригалинные (выносящие разную степень засоленности среды).

Стенобионтные - неспособные переносить значительные колебания проявления фактора (например, стенотермными являются белые медведи, ластоногие млекопитающие, обитающие при низком температурном режиме).

2. Закон экологической индивидуальности видов был сформулирован в 1924 г. русским ботаником Л.Г. Раменским: экологические спектры (толерантность) разных видов не совпадает, каждый вид специфичен по своим экологическим возможностям. Иллюстрацией указанного закона может служить рис. 2.

3. Закон ограничивающего (лимитирующего) фактора гласит, что наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Закон был установлен в 1905 г. английским ученым Блеккером.

Именно от этого, минимально (или максимально) представленного в данный конкретный момент экологического фактора зависит выживание организма. В другие отрезки времени ограничивающим могут быть другие факторы. В течение жизни особи видов встречаются с самыми разными ограничениями своей жизнедеятельности. Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; бабочки озимой совки (вредителя овощных и зерновых культур) - зимняя температура и т.д.

Этот закон учитывается в практике сельского хозяйства. Немецкий химик Ю. Либих установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо. Например, если фосфора в почве содержится лишь 20% от необходимой нор-ми, а кальция - 50%, то ограничивающим фактором будет недостаток фосфора; необходимо, в первую очередь, внести в почву именно фосфорсодержащие удобрения.

Это правило Ю. Либих назвал «правилом минимума», так как изучал влияние недостаточных доз удобрений. Позднее выяснилось, что избыток минеральных солей в почке тоже снижает урожайность, так как при этом нарушается способность корней всасывать растворы солей.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной. Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы - недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых - осы Blastophaga psenes. Родина этого дерева - Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологи ческой валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

4. Закон неоднозначного действия: действие каждого экологического фактора неоднозначно на разных стадиях развития организма. Примерами её проявления могут служить следующие данные:

Для развития головастиков вода жизненно необходима, а для взрослой лягушки она не является жизненно важным условием;

Критическая минимальная температура для взрослых особей бабочки огневки мельничной = -22°, а для гусениц бабочки этого вида критической является t = -7°.

Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45°С у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т.п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

5. Закон о прямых и косвенных факторах: экологические факторы по воздействию на организмы делят на прямые и косвенные.

Прямые экологические факторы действуют на организмы непосредственно, прямо (ветер, дождь или снег, состав минеральных компонентов почвы и т.п.).

Косвенные экологические факторы действуют опосредованно, перераспределяя прямые факторы. Например: рельеф (косвенный фактор) «перераспределяет» действие таких прямых факторов, как ветер, осадки, питательные вещества; физические свойства почвы (механический состав, влагоемкость и др.) как косвенные факторы «перераспределяют» действие прямых факторов - химических свойств.

6. Закон взаимодействия экологических факторов: оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору могут смещаться в зависимости от того, в сочетании с какими другими факторами осуществляется воздействие.

Так, жару легче переносить в сухом, а не во влажном воздухе; мороз хуже переносится в сочетании с ветреной погодой и т.п.

Данную закономерность учитывают в сельскохозяйственной практике для поддержания оптимальных условий жизнедеятельности культурных растений. Например, при угрозе заморозков на почве, которые случаются в средней полосе даже в мае, растения на ночь обильно поливают.

7. Закон толерантности В. Шелфолда.

Наиболее полно и в наиболее общем виде всю сложность экологических факторов на организм отражает закон толерантности: отсутствие или невозможность процветания определяется недостатком (в качественном или количественном отношении) или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам переносимого данным организмом. Эти два предела называют пределами толерантности.

Относительно действия одного фактора можно проиллюстрировать этот закон так: некий организм способен существовать при температуре от -5оС до 25оС, т.е. диапазон его толерантности лежит в пределах этих температур. Организмы, для жизни которых требуются условия, ограниченные узким диапазоном толерантности пот величине температуры, называют стенотермными, а способных жить в широком диапазоне температур - эвритермальными.

Подобно температуре действуют и другие лимитирующие факторы, а организмы по отношению к характеру их воздействия называют, соответственно, стенобионтами и эврибионтами. Например, говорят: организм стенобиотен по отношению к влажности, или, эврибионтен к климатическим факторам. Организмы, эврибионтные к основным климатическим факторам, наиболее широко распространены на Земле.

Диапазон толерантности организма не остаётся постоянным - он, например, сужается, если какой-нибудь из факторов близок к какому-либо пределу, или при размножении организма, когда многие факторы становятся лимитирующими. Значит, и характер действия экологических факторов при определённых условиях может меняться, т.е. он может быть, а может и не быть лимитирующим.

9. Классификация живых организмов по характеру питания (автотрофы, гетеротрофы, миксотрофы), по способу добывания пищи. Жизненные формы растений (фанерофиты, хамефиты, криптофиты и др). Жизненные формы животных. Классификация организмов по участию в биологическом круговороте (продуценты, консументы, редуценты).

Современные представления о популяциях растений и животных. Классификация и структура популяций. Динамика популяций.

Определённые типы внешнего строения, возникшие как приспособления к экологическим условиям местообитания, называют жизненными формами организмов.

Среди приспособлений организмов к условиям среды, возникших в результате эволюции, наиболее наглядными можно считать приспособления (адаптации), проявляющиеся в особенностях внешнего строения растений и животных. Их называют морфологическими (от греч. морфе? форма). Определенные типы внешнего строения, возникшие как приспособления к экологическими условиям местообитаний, называют жизненными формами организмов.

Жизненные формы у растений и животных очень разнообразны. Они выделяются по совокупности признаков строения и образа жизни. Так, наиболее широко распространенные жизненные формы растений? деревья, кустарники, травы. Последние делятся на водные и наземные, среди которых, в свою очередь, также выделяются разнообразные формы. Яркие примеры приспособлений к суровым условиям среды дают такие жизненные формы растений, как суккуленты (в засушливом климате), лианы (при недостатке света), стланики и растения-подушки (в тундрах, высокогорьях с низкой температурой и сухостью при сильных ветрах).

Жизненные формы животных выделяются по разным признакам для разных систематических групп. Так, для зверей одними из основных признаков для выделения жизненных форм, помимо среды обитания, считаются способы передвижения (ходьба, бег, прыжки, плавание, ползание). Характерными чертами внешнего строения наземных прыгунов, например, являются длинные задние конечности с сильно развитой мускулатурой бедер, длинный хвост, короткая шея. К ним относятся обычно обитатели открытых пространств: азиатские тушканчики, австралийские кенгуру, африканские прыгунчики и другие прыгающие млекопитающие, живущие на разных континентах.

Жизненные формы птиц различают по типу их местообитания и способу добывания пищи, а у рыб? в основном по форме тела. Жизненные формы обитателей водоемов также выделяют по типу их местообитаний. Так, в водной толще мелкие организмы образуют планктон (от греч. планктос? блуждающий), то есть совокупность организмов, живущих во взвешенном состоянии и неспособных противостоять течениям. Обитатели грунта образуют бентос (от греч. бентос? глубина). К отдельным жизненным формам относятся организмы, живущие у поверхностной пленки воды или на различных твердых субстратах.

Сходные жизненные формы возникли в результате эволюции, происходящей в сходных экологических условиях у систематически разных организмов: например, кенгуру и тушканчики, дельфины и рыбы, птицы и летучие мыши, черви и змеи и т. д.

Нельзя считать, что, претерпев ряд глубоких изменений в процессе эволюции и достигнув большого разнообразия, живая природа застыла в неизменном облике. Она продолжает меняться. И эта способность организмов к изменению является важнейшим фактором, обеспечивающим соответствие между организмами и средой их обитания.

Популяция - совокупность особей одного вида, занимающих определенный ареал, свободно скрещивающихся друг с другом, имеющих общее происхождение, генетическую основу и в той или иной степени изолированных от других популяций данного вида.

Важнейшее свойство популяций - самовоспроизводство. Даже несмотря на пространственную разобщенность, популяции способны неограниченно долго поддерживать свое существование в данном местообитании. Они являются устойчивыми во времени и пространстве группировками особей одного вида. К стайке рыб или воробьев не применим термин «популяция». Такие группы могут легко распадаться под влиянием внешних факторов или смешиваться с другими. Иными словами, они не способны устойчиво воспроизводить сами себя. Это под силу лишь крупным группам, обладающим основными свойствами вида и представленным всеми категориями слагающих его особей. Таковы, например, все особи окуня в озере или все сосны в лесном массиве.

Очевидно, что наборы условий в различных местообитаниях могут несколько различаться. Под влиянием разных условий в отдельных популяциях могут возникать и накапливаться свойства, отличающие их друг от друга. Это может проявляться в небольших отклонениях строения организмов, принадлежащих к разным популяциям, их физиологических показателей (вспомните о явлении акклиматизации) других характеристик. Таким образом, популяции, как и отдельные организмы, обладают изменчивостью. Как и среди организмов, среди популяций невозможно найти двух полностью тождественных.

Изменчивость, как вы уже знаете, важнейший фактор эволюции. Популяционная изменчивость повышает внутреннее разнообразие вида. Это, в свою очередь, повышает устойчивость вида к локальным (местным) изменениям условий жизни, позволяет ему проникать и закрепляться в новых для себя условиях и районах. Можно сказать, что существование в форме популяций обогащает вид, обеспечивает его целостность и постоянное самоподдержание основных видовых свойств.

Популяции, обитающие в различных участках видового ареала (общей области распространения вида), не живут изолированно. Они взаимодействуют с популяциями других видов, образуя вместе с ними биотические сообщества? целостные системы еще более высокого уровня организации. В каждом сообществе популяция данного вида играет отведенную ей роль, занимая определенную экологическую нишу и совместно с популяциями других видов обеспечивая устойчивое функционирование сообщества.

Экологи, изучающие экологические системы, рассматривают популяции в качестве их основных элементов. Именно благодаря функционированию популяций создаются условия, способствующие поддержанию жизни.

Не отдельными организмами, а именно популяциями определяется характер и степень использования различных видов ресурсов. От популяций зависит круговорот веществ, энергетический обмен между живой и неживой природой. Совместная деятельность популяций определяет многие важные свойства биотических сообществ и экологических систем.

На основании сказанного можно дать более широкое определение популяции. Популяция? относительно изолированная группировка организмов одного вида, обладающая способностью к самоподдержанию видовых свойств и выполняющая определенную роль в сообществе живых организмов.

Популяция обладает не только биологическими свойствами составляющих ее организмов, но и собственными, которые присущи только этой группе особей в целом. Как и отдельный организм, популяция растет, совершенствуется, поддерживает сама себя. Однако групповые свойства, например обилие, рождаемость, смертность, возрастной состав, могут характеризовать только популяцию в целом и не применимы к отдельным ее особям.

Составляющие популяцию организмы связаны друг с другом различными взаимоотношениями: они совместно участвуют в размножении, они могут конкурировать друг с другом за те или иные виды ресурсов, могут поедать друг друга или вместе обороняться от хищника. Внутренние взаимоотношения в популяциях очень сложны. Поэтому реакции отдельных особей на изменения тех или иных экологических факторов и популяционные реакции часто не совпадают. Гибель отдельных организмов (например, от хищников) может улучшить качественный состав популяции (гибнут слабые, остаются сильные), повысить ее способность к самоподдержанию численности. Здесь мы сталкиваемся с одним очень важным правилом, применимым к экологическим объектам, состоящим из многих элементов, связанных друг с другом различными взаимоотношениями: о состоянии экологического объекта (будь то популяция, сообщество или экосистема) не всегда можно судить по состоянию его отдельных элементов.

Демографические показатели. Такие популяционные характеристики, как обилие, рождаемость, смертность, возрастной состав, называются демографическими показателями. Знание их очень важно для понимания законов, управляющих жизнью популяций и предугадывания происходящих в них постоянных изменений.

Изучение демографических показателей имеет большое практическое значение. Так, при заготовках древесины очень важно знать скорость восстановления леса, чтобы правильно планировать интенсивность рубок. Некоторые популяции животных используются для получения ценного пищевого или пушного сырья. Изучение других популяций (например мелких грызунов, среди которых циркулируют возбудители опасных для человека заболеваний) важно с медико-санитарной точки зрения.

Во всех этих случаях нас, прежде всего, интересуют изменения популяции в целом, предсказание этих изменений и их регулирование (например, снижение численности вредителей сельскохозяйственных угодий). Крайне необходимым для этого является знание причин и скорости популяционных изменений, а также умение измерять эти природные объекты.

11. 300 тыс – 3 млн

Объектом изучения демэкологии, или популяционной экологии, служит популяция. Ее определяют как группу организмов одного вида (внутри которой особи могут обмениваться генетической информацией), занимающую конкретное пространство и функционирующую как часть биотического сообщества. Каждая особь популяции является носителем уникального адаптивного комплекса, но поскольку между членами популяции существует взаимодействие, вся группа в целом, т.е. популяция, оказывает влияние на свойства биотического сообщества. Можно сказать, что виды, слагающие биотическое сообщество, участвуют в его жизнедеятельности в форме популяций.

Популяция характеризуется рядом признаков; единственным их носителем является группа, но не особи в этой группе. Важнейшее свойство популяции - плотность, т.е. число особей, отнесенное к некоторой единице пространства.

Основные итоги обзора факторов, управляющих плотностью популяций, могут быть сформулированы в виде четырех выводов.

1. Факторы динамики численности подразделяются на модифицирующие и регулирующие. Модифицирующие факторы могут действовать прямо и косвенно (например, через изменение численности популяции хищника). Абиотические факторы чаще оказывают модифицирующее влияние.

2. По характеру реакций на факторы динамики численности следует различать, с одной стороны, равновесные популяции и, с другой - оппортунистические. Первым свойственны низкая плодовитость, большая продолжительность жизни особей, низкие темпы обновления популяции, относительная независимость особей от климатических условий. Оппортунистические популяции, наоборот, отличаются высокой плодовитостью особей, меньшей продолжительностью жизни особей, зачастую большим числом генераций в году, большей зависимостью особей от климатических условий.

Регуляция численности равновесных популяций определяется преимущественно биотическими факторами. Среди них главным фактором часто оказывается внутривидовая конкуренция, как, например, у птиц, которые борются за места, удобные для гнездования.

Регуляция численности оппортунистических популяций определяется преимущественно абиотическими факторами. При благоприятных климатических условиях быстрое развитие особей позволяет им сильно размножиться за короткий промежуток времени; к концу благоприятного периода совместное действие климата, хищников и болезней быстро снижает численность популяции.

3. В районах с относительно устойчивым и благоприятным для размножения климатом основную роль играют биотические факторы; в местностях с менее благоприятным климатом и особенно с отчетливо выраженным зимним периодом климатическим факторам принадлежит определяющая роль.

4. Наконец, устойчивость популяций зависит от степени сложности экосистемы. Чем сложнее экосистема, чем больше число взаимодействующих видов, тем более устойчивы популяции.

12. Сообщество – совокупность организмов всех видов, обитающих на определенной территории и взаимодействующие друг с другом.

Свойства –

1) Видовой состав

2) Соотношение видов по численности

3) Виды – массовые, обычные, редкие, единичные.

4) Соотношение видов по типу питания: продуценты, консументы, травоядные, хищники, падальщики, редуценты.


Похожая информация.


Закон оптимума. Экологические факторы среды имеют количественное выражение. Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 2). Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей.

По отношению к каждому фактору можно выделить зону оптимума (зону нормальной жизнедеятельности), зону пессимума (зону угнетения), верхний и нижний пределы выносливости организма.

Зона оптимума, или оптимум (от лат. optimum - благороднейший, лучший), - такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов максимальна.

Зона пессимуму, или пессимум (от лат. pessimum - причинять вред, терпеть ущерб), - такое количество экологического фактора, при котором интенсивность жизнедеятельность организмов угнетена.

Верхний предел выносливости - максимальное количество экологического фактора, при котором возможно существование организма.

Рис. 2.

Нижний предел выносливости - минимальное количество экологического фактора, при котором возможно существование организма.

За пределами выносливости существование организма невозможно.

Кривая может быть широкой или узкой, симметричной или асимметричной. Форма ее зависит от видовой принадлежности организма, от характера фактора и от того, какая из реакций организма выбрана в качестве ответной и на какой стадии развития.

Способность живых организмов переносить количественные колебания действия экологического фактора в той или иной степени называется экологической валентностью (толерантностью, устойчивостью, пластичностью).

Значения экологического фактора между верхним и нижним пределами выносливости называется зоной толерантности.

Виды с широкой зоной толерантности называются эврибионтными (от греч. euris - широкий), с узкой - стенобионтными (от греч. stems - узкий) (рис. 3 и 4).

Организмы, переносящие значительные колебания температуры, называются эвритермными , а приспособленные к узкому интервалу температур - стенотермными. Таким же образом по отношению к давлению различают эври- и стенобатные организмы, по отношению к влажности - эври- и стеногидрические, по отношению к степени за-


Рис. 3. 1 - эврибионтные: 2 - стенобионтные


Рис. 4.

соления среды - эври- и стеногалинные, по отношению к содержанию кислорода в воде - эвры- и стеноксибионтные, по отношению к пише - эври- и стенофагные, по отношению к местообитанию - эври- и стено- ойкные, и т.д.

Таким образом, направление и интенсивность действия экологического фактора зависят от того, в каких количествах он берется и в сочетании с какими другими факторами действует. Не бывает абсолютно полезных или вредных экологических факторов: все дело в количестве. Например, если температура окружающей среды слишком низкая или слишком высокая, то есть выходит за пределы выносливости живых организмов, это для них плохо. Благоприятными являются только оптимальные значения. При этом экологические факторы нельзя рассматривать в отрыве друг от друга. Например, если организм испытывает дефицит воды, то ему труднее переносить высокую температуру.

Явление акклиматизации. Положение оптимума и пределов выносливости на градиенте фактора может в определенных пределах сдвигаться. Например, человек легче переносит пониженную температуру окружающей среды зимой, чем летом, а повышенную - наоборот. Это явление называется акклиматизацией (или акклимацией). Акклиматизация происходит при смене сезонов года или при попадании на территорию с другим климатом.

Неоднозначность действия фактора на разные функции организма.

Одно и то же количество фактора неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться песси- мумом для других. Например, у растений максимальная интенсивность фотосинтеза наблюдается при температуре воздуха +25...+35 °С, а дыхания - +55 °С (рис. 5). Соответственно, при более низких температурах будет происходить прирост биомассы растений, а при более высоких - потеря биомассы. У холоднокровных животных повышение температуры до +40 °С и более сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. У человека семенники вынесены за пределы таза, так как сперматогенез требует более низких температур. Для многих рыб температура воды, оптимальная для созревания гамет, неблагоприятна для икрометания, которое происходит при другой температуре.

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т.п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут


Рис. 5. t MUH , t onm , t MaKC - температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)

также менять места обитания для успешного осуществления всех своих жизненных функций.

Экологическая валентность вида. Экологические валентности отдельных особей не совпадают. Они зависят от наследственных и онтогенетических особенностей отдельных особей: половых, возрастных, морфологических, физиологических и т.д. Поэтому экологическая валентность вида шире экологической валентности каждой отдельной особи. Например, у бабочки мельничной огневки - одного из вредителей муки и зерновых продуктов - критическая минимальная температура для гусениц составляет -7 °С, для взрослых форм--22 °С,

а для яиц--27 °С. Мороз в -10 °С губит гусениц, но не опасен для

имаго и яиц этого вредителя.

Экологический спектр вида. Набор экологических валентностей вида по отношению к разным факторам среды составляет экологический спектр вида. Экологические спектры разных видов отличаются друг от друга. Это позволяет разным видам занимать разные места обитания. Знание экологического спектра вида позволяет успешно проводить интродукцию растений и животных.

Взаимодействие факторов. В природе экологические факторы действуют совместно, то есть комплексно. Совокупное действие на организм нескольких факторов среды называется констелляцией. Зона оптимума и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Например, высокую температуру труднее переносить при дефиците воды, сильный ветер усиливает действие холода, жару легче переносить в сухом воздухе, и т.д. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие (рис. 6). Соответственно, один и тот же экологический результат может быть получен разными путями. Например, компенсация недостатка влаги может быть осуществлена поливом или снижением температуры. Создается эффект частичного вза- имозамещения факторов. Однако взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя.

Рис. 6. Смертность яиц соснового шелкопряда Dendrolimuspini при разных сочетаниях температуры и влажности (по Н.М. Черновой, А.М. Быловой, 2004)

Таким образом, абсолютное отсутствие какого-либо из обязательных условий жизни заменить другими экологическими факторами невозможно, но недостаток или избыток одних экологических факторов может быть возмещен действием других экологических факторов. Например, полное (абсолютное) отсутствие воды нельзя компенсировать другими экологическими факторами. Однако если другие экологические факторы находятся в оптимуме, то перенести недостаток воды легче, чем когда и другие факторы находятся в недостатке или избытке.

Закон лимитирующего фактора. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Экологический фактор, количественное значение которого выходит за пределы выносливости вида, называется лимитирующим (ограничивающим) фактором. Такой фактор будет ограничивать существование (распространение) вида даже в том случае, если все остальные факторы будут благоприятными (рис. 7).

Рис.

Лимитирующие факторы определяют географический ареал вида. Например, продвижение вида к полюсам может лимитироваться недостатком тепла, в аридные районы - недостатком влаги или слишком высокими температурами.

Знание человеком лимитирующих факторов для того или иного вида организмов позволяет, изменяя условия среды обитания, либо подавлять, либо стимулировать его развитие.

Условия жизни и условия существования. Комплекс факторов, под действием которых осуществляются все основные жизненные процессы организмов, включая нормальное развитие и размножение, называется условиями жизни. Условия, в которых размножения не происходит, называются условиями существования.

Несмотря на разнообразие факторов, в их действии и ответных реакциях организма есть общие закономерности.

1. Закон оптимума : Каждый фактор имеет строго определенные пределы положительного воздействия на живой организм.

Благоприятная сила воздействия фактора называется зоной оптимума. Недостаточное или избыточное действие фактора отрицательно сказывается на жизнедеятельности организма. Чем сильнее отклоняется действие фактора, тем более выражено его угнетающее действие (зона пессимума). Максимально и минимально переносимые значения фактора – критические точки, за пределами которых существование организма становится невозможным. Пределы выносливости вида по отношению к какому-то фактору составляют его экологическую валентность.

Виды различаются между собой значениями экологической валентности и положением зоны оптимума. Примеры:

У самки обыкновенного немалярийного комара температурный оптимум для откладки яиц составляет +20°. При +15° и +30° происходит подавление процесса откладки яиц, а при +10° и +35° полное прекращение.

Для полярных рыб оптимум температуры 0°, а пределы выносливости от –2° до +2°.

У сине-зеленых водорослей, обитающих в гейзерах, температурный оптимум +85°, а пределы выносливости от +84° до +86°.

Виды, имеющие широкую экологическую валентность, обозначают, добавляя приставку эври- к названию фактора, например, эвритермные – по отношению к температуре, эвригалинные – по отношению к солености воды, эврибатные – к давлению. Виды с узкой экологической валентностью называют с приставкой стено- , также добавляя название фактора: стенотермные, стеногалинные, стенобатные.

Виды, имеющие широкую экологическую валентность по отношению ко многим факторам, называются эврибионтными, а узкую – стенобионтными.

2. Правило ограничивающего фактора. В природе на организмы одновременно влияет целый комплекс факторов среды в разных комбинациях и с разной силой. Среди них бывает трудно отделить самые важные от второстепенных, это зависит от силы воздействия каждого.

Ограничивающим называют фактор, интенсивность которого в качественном или количественном отношении в данный момент приближается или выходит за пределы критических значений.

Правило ограничивающего фактора:Наиболее значим тот фактор, который больше всего отклоняется от оптимальных для организма значений.

Специфических ограничивающих факторов в природе не существует, поэтому любой из факторов может стать ограничивающим. Их природа различна: абиотические, биотические и антропогенные.

Рассмотрим в качестве ограничивающего фактора температуру. Лимитирующим фактором распространения деревьев бука в Европе является низкая температура января, поэтому северные границы его ареала соответствуют январской изотерме –2 о С. Лось в Скандинавии встречается значительно севернее, чем в Сибири, где более низкие зимние температуры. Рифообразующие кораллы обитают только в тропиках при температуре воды не ниже 20°С.


Климатические и почвенные факторы определяют ареал распространения растений и их урожайность.

По отношению к человеку в роли ограничивающего фактора может быть содержание витаминов (С, D), микроэлементов (йод) в продуктах питания.

3. Взаимодействие факторов: Зона оптимума зависит от комбинации факторов, действующих на организм.

Примеры: при оптимальной температуре животные легче переносят недостаток корма. Достаточное количество пищи позволяет животным легче переносить низкие температуру и влажность.

Хорошо известно, что человеку жару легче переносить при низкой, а не при высокой влажности. Снижение влажности может привести к увеличению экологической валентности вида по отношению к температуре. Человек способен в течение 45 минут без последствий для здоровья переносить температуру +126°С, но при очень низкой влажности. Низкая температура хуже переносится людьми в ветреную погоду. Сочетание приема алкоголя и низкой температуры воздуха приводит к быстрому переохлаждению организма, отморожению частей тела. Эта закономерность учитывается в медицине при назначении лекарственных препаратов; например, средства, снижающие повышенное артериальное давление, действуют сильнее, если снижено потребление соли.

4. Неоднозначность действия факторов на различные функции организма : Каждый экологический фактор оказывает неодинаковое влияние на разные функции организма.

При повышении температуры до 40° градусов у холоднокровных животных ящериц усиливается обмен веществ, но в то же время резко угнетается двигательная активность.

В характере воздействия факторов среды и ответных реакциях живых организмов выявлен ряд общих закономерностей, которые укладываются в некоторую общую схе-му действия экологического фактора разной дозы на жизнедеятельность организмов.

Количественное выражение экологического фактора в пределах зоны толерантности определяется в основном значениями, представленными тремя кардинальными точками - минимума, оптимума и максимума, и на рис. 5.2 кривая 1 имеет вид куполообразной кривой, так называемой кривой толерантности. Крайние пороговые значения (точки минимума и максимума) называются нижним и верхним пределами выносливости.

Зона, непосредственно прилегающая к точке оптимума, называется зоной оптимума или зоной комфорта. В этой зоне организм максимально адаптирован к действию экологического фактора, и количество последнего соответствует экологическим потребностям организма. Значение оптимума не является абсолютной величиной для конкретного вида, а зависит от стадии онтогенеза, периода жизни и действия других факторов. Зона, прилегающая к зоне оптимума, называется зоной нормы. Ей соответствует такое количество экологического фактора, при котором все жизненно важные процессы протекают нормально, однако для поддержания их на этом уровне необходимы дополнительные энергетические затраты.

В зоне пессимума нормальный ход процессов жизнедеятельности затруднен.

Повторяемость описанных тенденций позволяет рассматривать их как фундаментальный биологический принцип: для каждого вида растений и животных существует оптимум, зона нормальной жизнедеятельности, стрессовые зоны и пределы выносливости в отношении каждого фактора среды.

Адаптация к каждому фактору связана с затратами энергии. В зоне оптимума адаптивные механизмы отключены и энергия расходуется только на фундаментальные жизненные процессы (энергозатраты на базальный метаболизм).

При выходе значений фактора за пределы оптимума включаются адаптивные механизмы, функционирование которых сопряжено с определенными затратами энергии - тем большими, чем дальше значение фактора отклоняется от оптимального. При этом усиление энергорасходов на адаптацию ограничивает возможный набор форм жизнедеятельности организма: чем дальше от оптимума находится количественное выражение фактора, тем больше энергии направленно расходуется на адаптацию и тем меньше «степеней свободы» в проявлении иных форм деятельности. В конечном итоге нарушение энергетического баланса организма наряду с повреждающим действием недостатка или избытка фактора ограничивает диапазон переносимых им изменений. Размах адаптивных изменений количественного выражения фактора определяется как экологическая валентность или экологическая пластичность вида по данному фактору. Величина ее различна у разных видов.


Экологически непластичные, т. е. маловыносливые виды, для существования которых необходимы строго определенные, относительно постоянные условия внешней среды, называются стенобионтными (от греч. stenos - узкий, bios - жизнь), а те, которые могут жить в широком диапазоне изменчивости условий среды, - эврибионтными (от греч. eurys - широкий).

В зависимости от конкретного фактора среды различают организмы стено- и эвритермные по отношению к температуре, стено- и эврифотные по отношению к свету, стено- и эврибатные по отношению к давлению, стено- и эвригалинные по отношению к концентрации солей. Важно подчеркнуть, что явление стенобионтности фактически используется в практике экологической индикации качества окружающей среды. Узкоспециальные по отношению к ряду факторов видовые популяции могут

служить более чувствительными показателями качества среды, чем физические и химические.

Экологическая валентность как видовое свойство эволюционно формируется в качестве приспособления к той степени колебаний данного фактора, которая свойственна естественным местам обитания вида. Поэтому, как правило, переносимый данным видом диапазон колебаний фактора соответствует его естественной динамике: обитатели континентального климата выдерживают более широкие колебания температуры, чем жители приэкваториальных муссонных регионов. Сходные отличия обнаруживаются и на уровне различных популяций одного вида, если они занимают не одинаковые по условиям места обитания.

Помимо величины экологической валентности, виды (и популяции одного вида) могут отличаться и местоположением оптимума на шкале количественных изменений фактора. Виды, приспособленные к высоким дозам данного фактора, терминологически обозначаются окончанием -фил (от греч. phyleo - любить): термофилы (теплолюбивые виды), оксифилы (требовательны к высокому содержанию кислорода), гигрофилы (населяют места с высокой влажностью) и т. д. Виды, обитающие в про тивоположных условиях, обозначаются термином с окончанием -фоб (от греч. phobos - страх): галлофобы - обитатели пресных водоемов, не переносящие осолонения, хианофобы - виды, избегающие глубокоснежья, и т. п. Нередко такие формы характеризуют «от обратного»: например, виды, не переносящие избыточного увлажнения, чаще называют ксерофильными (сухолюбивыми), чем гигрофобными; подобным же

образом взамен термина «термофоб» чаще употребляют «криофил» (холодолюбивый).

Информация об оптимальных значениях отдельных факторов и диапазоне переносимых ими колебаний достаточно полно характеризует отношение вида (популяции) к каждому исследованному фактору. Следует, однако, иметь в виду, что рассмотренные категории дают лишь общее представление о реакции вида на воздействие отдельных факторов. Это важно при общей экологической характеристике вида и решении ряда прикладных задач экологии (например, проблема акклиматизации вида в новых условиях), хотя и не определяет полного объема взаимодействия вида с условиями среды в сложной природной обстановке.

В совокупности условий существования всегда можно выделить фактор, который сильнее других влияет на состояние организма или популяцию. Так, дефицит одного из важных ресурсов (вода, свет, пища, незаменимая аминокислота) будет ограничивать жизнедеятельность даже тогда, когда все остальные условия оптимальны. Фактор,который при определенном наборе условий окружающей среды ограничивает какое-либо проявление жизнедеятельности, называется лимитирующим. Понятие лимитирующего фактора связано с законом минимума Либиха. Еще в середине XIX в. Известный немецкий химик Ю. Либих, разрабатывая систему применения минеральных удобрений, сформулировал правило минимума, в соответствии с которым возможность существования данного вида в определенном районе и степень его «процветания» зависят от факторов, представленных в наименьшем количестве. Ученый установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах (СО2, Н2О и др.), поскольку они, как правило, присутствуют в изобилии, а теми, которые необходимы в малых количествах и которых в почве недостаточно. Классическими примерами воздействия лимитирующего фактора на развитие растений являются исчерпание запасов бора в почве в результате возделывания одной и той же культуры в течение длительного времени или количество доступной

влаги в засушливых аридных районах.

Позднее действие закона минимума Либиха было дополнено двумя принципами. Первый - ограничительный: закон может быть применим лишь в условиях стационарного состояния, т. е. когда приток и отток энергии и веществ сбалансированы.

Второй принцип - взаимодействие различных факторов. Например, некоторым рас-тениям нужно меньше цинка, если они растут не на ярком солнечном свету, а в тени; значит, концентрация цинка в почве с меньшей вероятностью может быть лимитирующей для растений в тени, чем для растений на свету.

Лимитирующим может быть не только недостаток (минимум), но и избыток (максимум) экологического фактора. Представление о лимитирующем влиянии максимума наряду с минимумом развил американский зоолог В. Шелфорд в 1913 г.

Закон толерантности Шелфорда: лимитирующим фактором процветания может быть как минимум, так и максимум экологического фактора, диапазон между которыми определяет величину толерантности, выносливости организма к данному фактору.

Интересный пример действия закона толерантности В. Шелфорда (много «хорошо» - тоже нехорошо) приводит Ю. Одум (1986). Создание утиных ферм вдоль рек, впадающих в южную бухту в проливе Лонг-Айленд близ Нью-Йорка, стало причиной сильного удобрения вод утиным пометом, из-за чего значительно увеличилась численность фитопланктона и, самое главное, произошла его структурная перестройка: дино флагелляты и диатомовые водоросли Nitzschia оказались почти полностью

заменены зелеными жгутиковыми, относящимися к родам Nannochloris и Stichococcus.

Знаменитые голубые устрицы, ранее процветавшие на рационе из традиционного фи-

топланктона и бывшие предметом выгодного водного хозяйства, постепенно исчезли, не адаптировавшись к новому виду пищи. Таким образом, избыток биогенов оказал лимитирующее воздействие на устриц.

Существует ряд вспомогательных принципов, дополняющих «закон толерантности».

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении других факторов.

2. Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены. Например, карась, карп и многие другие рыбы переносят довольно низкое (менее 2 мг/л) содержание кислорода в воде, большую ее мутность, высокий диапазон температур. Поэтому они широко распространены в водоемах разных типов. Форель, напротив, встречается в реках, где концентрация кислорода более 2 мг/л. При содержании кислорода менее 1,6 мг/л она гибнет.

3. Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться и диапазон толерантности к другим экологическим факторам. Напри- мер, при недостатке азота снижается засухоустойчивость злаков, т. е. растениям для выживания требуется больше воды.

4. В природе организмы часто оказываются в условиях, не соответствующих оптимальному диапазону того или иного фактора, определенному в лаборатории. В этом случае для жизнедеятельности организма более важным оказывается иной фактор. Например, некоторые тропические орхидеи в лаборатории при невысоких температурах лучше развиваются на солнце, чем в тени. В природе же они растут исключительно в тени, так как не переносят воздействия прямых солнечных лучей.

5. Периоды размножения обычно являются критическими для организмов. Многие факторы среды в это время становятся лимитирующими. Пределы толерантности для размножающихся особей и зародышей обычно у́ же, чем для неразмножающихся взрослых животных и растений. Взрослые голубые крабы рода Portunus хорошо переносят солоноватую и пресную воду с высоким содержанием хлоридов, поэтому часто заходят в реки вверх по течению, однако не размножаются, так как для личинок крабов нужна высокая соленость. Зрелый кипарис способен расти как на сухом нагорье, так и на полностью заливаемой почве, тогда как для прорастания семени требуется увлажненная, но не заливаемая почва. Географическое распространение промысловых птиц часто определяется влиянием климатических факторов на стадиях раннего онтогенеза, а не на взрослых особей. К недостатку пищи более устойчивы взрослые особи. Таким образом, в течение индивидуального развития (онтогенеза) реакция животных и растений на экологические факторы меняется.

Изменения факторов среды наблюдаются в течение года и суток, в случае приливов и отливов в океане, при бурях, ливнях, обвалах, похолодании или потеплении климата.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой состав почвы важен для минерального питания растений, но безразличен для большинства наземных животных.

Взаимодействие факторов в комплексах. Совокупное действие на организм нескольких факторов среды обозначают термином «констелляция». Экологически важно то обстоятельство, что констелляция не представляет собой простой суммы влияния факторов: при комплексном воздействии между отдельными факторами устанавливаются особые взаимодействия, когда влияние одного фактора в какой-то мере изменяет (усиливает, ослабляет и т. п.) характер воздействия другого.

Известно, например, что реакции газообмена у рыб существенно отличаются в условиях разной солености воды. В некоторых случаях недостаток одного фактора частично компенсируется усилением другого. Явление частичной взаимозаменяемости действия экологических факторов называется эффектом компенсации. Ю. Одум (1975) приводит такой пример: некоторые моллюски (в частности, Mytilus galloprovincialis) при отсутствии или дефиците кальция могут строить свои раковины, частично заменяя кальций стронцием при достаточном содержании в среде последнего. В пустынях недостаток осадков в определенной мере восполняется повышенной относительной влажностью воздуха в ночное время. Так, в пустыне туманов Намиб (Африка) среднегодовое количество осадков составляет примерно 30 мм, а с росой за 200 дней с туманом дополнительно поступает 40-50 мм осадков в год.

Климатические факторы могут замещаться биотическими (вечнозеленые виды южных растений в более континентальном климате могут расти в подлеске под защитой верхних ярусов, создавая собственный биоклимат). Такая компенсация факторов обычно создает условия для физиологической акклиматизации вида - эвриби-онта, имеющего широкое распространение. Акклиматизируясь в данном конкретном месте, он создает своеобразную популяцию, экотип, пределы толерантности которой

соответствуют местным условиям.

Однако полное отсутствие в среде фундаментальных экологических факторов (физиологически необходимых: света, воды, углекислого газа, питательных веществ) не может быть компенсировано (заменено) другими факторами.

Экологические факторы действуют на живые организмы по-разному. Они могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; ограничители, обусловливающие невозможность существования в данных условиях; модификаторы, вызывающие морфологические и анатомические изменения организмов. Таким образом, воздействие экологических факторов на кон-кретные организмы способно:

1) устранять те или иные виды с той или иной территории;

2) приводить к существенным популяционным перестройкам, изменять плодовитость особей, сроки жизни и т. д.;

3) изменять конкурентноспособность видов и приводить к перестройкам в сообществах разных типов;

4) вызывать появление адаптивных изменений у видов;

5) через воздействие на отдельные виды оказывать существенное влияние на биогеохимические циклы в биосфере.

СРЕДЫ ЖИЗНИ

Первой средой жизни, освоенной организмами, была водная среда, или гидросфера.

Это самая обширная область, занимающая до 71 % площади нашей планеты. Основное количество воды (97 %) сосредоточено в морях и океанах и лишь менее 0,5 % находится в реках, озерах, болотах. Большая же часть пресной воды заключена в ледниках.

В водной среде обитает около 150 тыс. видов животных и более 10 тыс. видов растений, называемых гидробионтами.28 5.Экологияорганизмов

Главным фактором, определяющим условия передвижения гидробионтов и создающим давление на разных глубинах, является плотность воды. Для дистиллированной воды она равна 1 г/см3 при +4 °С, а при содержании растворенных солей может достигать 1,35 г/см3. На плотность пресной воды сильное влияние оказывает температура:

она наибольшая при температуре +4 °С. При повышении или понижении температуры плотность воды уменьшается. При замерзании вода расширяется, увеличивая свой объем, и становится легче. Благодаря этому свойству лед располагается на поверхности водоема, в то время как наиболее плотная жидкая вода с положительной температурой находится подо льдом.

При активном передвижении гидробионты преодолевают сопротивление плотной воды за счет обтекаемой торпедообразной формы их тела. Вместе с тем высокая плотность воды и ее выталкивающая сила создают возможность опоры на нее. Поэтому в толще водной среды выделяют особые экологические группировки гидробионтов:

планктон (пассивно «парящие» организмы) и нектон (активно плавающие и способные преодолевать течения). Большинство рыб, некоторые беспозвоночные животные и цианобактерии имеют гидростатические аппараты (плавательный пузырь, газовые вакуоли и др.), позволяющие им флотировать в толще воды и «зависать» в ней на определенных глубинах. Благодаря способности воды удерживать в ее толще живые организмы (фито-, зоо-, бактериопланктон) и мертвую органическую взвесь у многих

водных животных (подвижных, малоподвижных и прикрепленных) развился особый способ добычи пищи - фильтрационный.

Высокая плотность воды создает возрастающее с глубиной давление, равное при-мерно 1 атм. на каждые 10 м.

Температурный режим водоемов более устойчив, чем на суше. Это связано с физическими свойствами воды и, прежде всего, с высокой величиной удельной теплоемкости. Чтобы изменить температуру 1 г воды на 1 °С, нужно затратить 4,19 Дж тепла (в 500 раз больше, чем для воздуха). Благодаря этому свойству вода, медленно нагреваясь и остывая, уменьшает амплитуду суточных и сезонных колебаний температур,

стабилизируя ее. Так, амплитуда годовых колебаний температуры в верхних слоях океана не более 10-15 °С, а в континентальных водоемах - 30-35 °С. Глубокие слои водоема имеют постоянные и более низкие величины температур. В экваториальных водах среднегодовая температура поверхностных слоев +26-27 °С, в полярных - около

0 °С и ниже. Более устойчивый температурный режим водоемов по сравнению с наземно-воздушной средой сформировал стенотермность большинства населяющих их гидробионтов. Эвритермные виды встречаются главным образом в мелких континентальных водоемах и литоральной зоне морей высоких и умеренных широт, где значительны суточные и сезонные колебания температуры.

Вода обладает большой скрытой теплотой плавления: для превращения 1 г льда в воду без изменения температуры необходимо затратить 80 кал.

У воды самая высокая из известных скрытая теплота парообразования. При испарении 1 г воды поглощается 537 кал. Благодаря этому свойству происходит смягчение климата.

Вода - хороший растворитель разнообразных минеральных веществ. В зависимости от концентрации растворенных в ней солей выделяют пресные (до 0,5 г/л), солоноватые (0,5-16 г/л), морские (16-47 г/л) и пересоленные (47-350 г/л) воды. Заселение

организмами водоемов с разной соленостью связано напрямую с их способностью к осморегуляции. Большинство гидробионтов являются стеногалинными организмами.

С повышением солености возрастает плотность воды и понижается температура ее замерзания.

В воде растворяются и газы. Однако кислорода в ней содержится в 30 раз меньше, чем при той же температуре в равном объеме воздуха, тогда как углекислого газа, 5.4.Средыжизни 29 напротив, в воде больше, чем в воздухе. Содержание кислорода и углекислого газа

в водоемах сильно изменится в течение суток: в светлое время содержание кислорода в воде повышается, а углекислого газа понижается вследствие осуществления фотосинтеза фотоавтотрофными гидробионтами; в ночное время происходит противоположное явление. Коэффициент диффузии кислорода в воде примерно в 320 тыс. раз ниже, чем в воздухе. В водоемах обогащение кислородом происходит за счет фото-синтетической аэрации и диффузии из воздуха. Диффузии способствуют ветер и движение воды. При повышении температуры воды, снижающей растворимость кислорода, отсутствии циркуляции воды за счет ветрового перемешивания в слоях, сильно заселенных живыми организмами, а также богатых мертвым органическим веществом в донной области водоемов, может создаваться резкий дефицит кислорода, особенно в ночное время, приводящий к гибели водных организмов - замору. Вследствие этого кислород в воде является лимитирующим фактором для жизни гидробионтов.

Свет проникает в толщу водоемов на разную глубину в зависимости от содержания в ней минеральных и органических взвешенных и растворенных веществ, а также угла наклона солнечных лучей, падающих на поверхность воды. Поэтому прозрачность природных вод невелика и находится в пределах от 0,1 до 66,5 м (величину прозрачности определяют путем погружения закрепленного на тросе белого диска Секки в воду до предельной глубины его видимости). Самые прозрачные воды в Саргассовом море - 66,5 м, в мелких морях прозрачность составляет 5-15 м, в реках - 1-1,5 м.

Нижняя граница прозрачности по диску Секки соответствует 5 % падающего на поверхность солнечного излучения. Фотосинтез продолжает идти и при меньшей освещенности, однако пятипроцентный уровень соответствует нижней границе основной фотосинтетической (эуфотической) зоны. Граница зоны фотосинтеза поэтому сильно варьирует в разных водоемах. В самых чистых водах эуфотическая зона простирается до глубин не ниже 200 м, сумеречная, или дисфотическая, зона занимает глубины до

1000-1500 м, а более глубокая афотическая зона полностью лишена солнечного света.

Количество света в верхних слоях водоемов сильно меняется и зависит от широты местности, а также времени года. Так, например, длинные полярные ночи, наличие ледяного покрова на водоемах сильно ограничивают время, пригодное для фотосинтеза.

Световые лучи с разной длиной волны поглощаются неодинаково: красные поглощаются уже в поверхностных слоях водоема, в то время как синие и в особенности зеленые части солнечного спектра проникают значительно глубже. Соответственно сменяют друг друга с глубиной зеленые, бурые и красные водоросли, имеющие разные специализированные пигменты для улавливания света с разной длиной волны.

Наземно-воздушная среда жизни освоена в ходе эволюции значительно позднее, чем водная. Она является наиболее разнообразной как во времени, так и в пространстве.

Тела живых организмов окружены воздухом - газообразной подвижной средой с низкой плотностью (в 800 раз меньше, чем у воды), невысоким и постоянным давлением (около 760 мм рт. ст.), высоким содержанием кислорода и малым количеством водяных паров. Это сильно изменяет условия дыхания, водообмена и передвижения живых существ.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Поэтому наземные организмы имеют в своем теле хорошо развитые механические ткани и опору на поверхность земли. Низкое сопротивление воздуха при движении позволяет животным передвигаться со значительно большей скоростью, чем гидробионтам.

Жизнь во взвешенном состоянии в воздухе невозможна. Лишь микроскопические организмы, пыльца, семена, споры временно присутствуют в воздухе и переносятся воздушными потоками, с помощью которых они расселяются. Определенные животные (насекомые, птицы, рукокрылые) способны к активному полету. Однако они используют его только для расселения и поиска пищи. Все остальные функции осуществляются на поверхности земли.

Газовый состав воздуха в приземном слое атмосферы довольно однороден и стабилен (азот - 78 %, кислород - 21 %, аргон - 0,9 %, углекислый газ - 0,03 % по объему) благодаря высокой диффузионной способности газов и постоянному его перемешиванию конвекционными и ветровыми потоками.

земных организмов по сравнению с первичноводными. Именно в наземной среде на базе высокой эффективности окислительных процессов в организме возникла гомойотермия животных (у птиц и млекопитающих). Кислород из-за постоянно высокого его содержания в воздухе не лимитирует жизнь в наземной среде.

Режимы влажности на суше очень разнообразны - от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Велика также суточная и сезонная изменчивость содержания водяных паров в атмосфере. Наземные организмы постоянно сталкиваются с проблемой потери воды. Эволюция наземных организмов проходила

в направлении приспособления к добыванию и сохранению влаги.

Свет является источником энергии для фотосинтеза и тепла. Наземные растения используют в процессе фотосинтеза электромагнитные волны главным образом синей и красной части видимой области солнечного спектра (390-760 нм). Интенсивность и количество света в наземно-воздушной среде наиболее велики и практически не лимитируют жизнь зеленых растений. Для подавляющего большинства животных с дневной и даже ночной активностью зрение играет важную роль в ориентации, по-

иске добычи, способов маскировки и т. п.

Рельеф местности и свойства грунта оказывают существенное влияние на жизнь наземных организмов, формируя особенности светового, температурного режимов, влажности.

Большой размах температурных колебаний в сочетании с различным режимом влажности, облачности, осадков, силы и направления ветра создает большое разнообразие погодных условий, действию которых подвергаются организмы. В различных географических районах складываются сходные погодные условия, формирующие их климат.

Для большинства наземных организмов (в особенности мелких) каждой климатической зоны важны также условия их непосредственного местообитания, зависящего от особенностей рельефа, экспозиции, наличия растительности, что в совокупности формирует микроклимат. Например, температура поверхности дерева, обращенной к югу, будет намного выше, чем на северной. Резко отличаются температура, влажность,

сила ветра, освещенность на открытых пространствах и в лесу, а зимой - на открытых участках почвы и под снегом, слоем опавших листьев, в норах, дуплах, пещерах и т. п.

Разнообразие микроклиматов создало гораздо больше вариантов условий в наземновоздушной среде, что способствовало возникновению в ходе эволюции более значительного количества видов наземных организмов по сравнению с водными.

Почва представляет собой сложную систему, состоящую из твердых минеральных частиц и органических остатков (перегноя), окруженных воздухом и водой. В зависимости от типа почвы - глинистая, песчаная, глинисто-песчаная и др. - она в большей или меньшей степени пронизана полостями, заполненными смесью газов и водными растворами. В почве, по сравнению с приземным слоем воздуха, сглажены темпера-

турные колебания, а на глубине 1 м не ощутимы и сезонные изменения температуры.

Верхний горизонт почвы содержит определенное количество перегноя (гумуса), от которого зависит продуктивность растительного покрова. Расположенный под ним.

Окружающая органическая и неорганическая природа есть среда обитания вида, это часть природы, с которой он непосредственно взаимодействует.

Ко всем условиям среды организмы способны приспосабливаться, эти приспособления принято называть адаптациями. Они могут быть анатомо-морфологического, физиологического, поведенческого характера. Элементы среды обитания, которые вызывают адаптации, называются экологическими факторами или факторами воздействия. Реальное значение факторов неодинаково. Некоторые факторы особенно важны и незаменимы, их принято называть условиями существования.

Экологические факторы делятся на 3 основные группы: абиотические, биотические и антропогенные, которые как бы соответствуют этапам эволюционного развития нашей планеты.

Абиотические или физико-химические - факторы неживой природы, это - климатические, к которым относятся: свет и лучистая энергия, температура, влажность, осадки, снежный покров, атмосферное давление, газовый состав, движение воздуха, атмосферное электричество; почвенно-грунтовые, геоморфологические, гидрологические.

Биотические - факторы живой природы, действующие прямо или косвенно на организм - это микроорганизмы, растения и растительные группировки, животные.

Под антропогенными факторами понимают влияние человека на живые организмы - прямое или косвенное, посредством изменения среды обитания.

По М. Бигону, Дж. Харперу, К. Таусенду (1989) экологические факторы разделяются на 2 группы: на условия и ресурсы.

Условия - изменяющиеся во времени и в пространстве факторы среды обитания, на которые организмы реагируют по-разному в зависимости от его силы (например, температура, влажность почвы и т.д.). В присутствии некоторых организмов условия могут меняться, так, растения могут изменять рН почвы, затенять пространство, но условия организмами не расходуются и не исчерпываются, и ни один организм не может их сделать недоступными или менее доступными для других организмов.

Ресурсы - это все то, что организмы используют и потребляют, и в зависимости от условий организмы могут изменить их количество или могут сделать их недоступными для других. Между организмами за тот или иной ресурс возникает конкуренция. В различные периоды жизни ресурсами могут быть различные вещества. Один и тот же фактор в зависимости от среды обитания может быть то ресурсом, то условием, например, кислород в воздушной среде - условие, а в водной - ресурс.

Некоторые экологические факторы остаются постоянными практически всегда, ряд других факторов очень сильно варьирует (конкуренция, климатические факторы). Степень изменчивости фактора зависит от среды обитания. Особенно глубокое влияние оказывают на организмы изменяющиеся факторы. А.С.Мончадский (1958) предложил классификацию, которая учитывает изменчивость факторов. По его классификации:

1 группа - это стабильные факторы. Не изменяющиеся в течение длительного времени (сила тяготения, солнечная постоянная, состав атмосфера, рельеф и т.д.)

2 группа - изменяющиеся факторы, которые, в свою очередь, делятся на:

Факторы, изменяющиеся закономерно, периодически, вследствие движения солнечной системы (солнечная радиация, фотопериодизм, температура, приливы и отливы и т.п.)

Факторы, изменяющиеся без строгой периодичности (ветер, осадки, биотические и антропогенные).

Экологические факторы в самом простом случае оказывают прямое влияние, например, ящерица греется на солнце - температура ее тела повышается. Чаще всего же мы встречаемся с опосредованным, косвенным влиянием. Один и тот же фактор на одни организмы оказывает прямое влияние, а на другие косвенное. Несмотря на большое разнообразие экологических факторов можно выделить ряд закономерностей их действия на организмы.

Главный из них - закон оптимума. Сила действия экологических факторов постоянно меняется, лишь в некоторых местах планеты значения факторов более- менее постоянны (на больших глубинах). Закон оптимума гласит, что любой экологический фактор имеет определенные пределы положительного влияния на организмы. Существуют наиболее оптимальные дозировки факторов, при которых организмы данного вида чувствуют себя наиболее комфортно. Графически закон отражается симметричной кривой, показывающей, как меняется жизнедеятельность при увеличении дозы фактора. В центре под кривой - зона оптимума, в пределах которого организмы активно растут, питаются, успешно размножаются. Чем больше или меньше значение фактора, тем менее благоприятно это для живых организмов. Это субоптимальные или пессимальные зоны. Значения факторов, при которых наступает гибель организмов, называются критическими или экстремальными точками (рис.1). На графике - это точки пересечения с осью ОХ. Предел выносливости между двумя экстремальными точками называется экологической валентностью или пластичностью вида. У одних видов расстояние между критическими точками велико, значит, они могут жить в широких пределах значений фактора. У других же - критические точки сближены, это значит, что виды могут жить только в очень узком диапазоне значений фактора - в очень стабильных условиях. Широкая экологическая валентность обозначается приставкой “эври“, применительно к отдельным факторам различаются эврифаги, эвритермы, в широком смысле - эврибионты. И в противоположность им виды с узкой валентностью - приставкой “стено“, это виды стенофаги, стеногалы и стенобионты. Виды, длительное время развивавшиеся в относительно стабильных условиях, теряют экологическую пластичность и вырабатывают черты стенобионтности, а виды, существовавшие при значительных колебаниях факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными.

Рис.1. Закон Оптимума.

Другая закономерность касается неоднозначного действия фактора на разные функции одного и того же организма. Оптимум для одних процессов может быть субоптимальным для других функций. Например, для фотосинтеза оптимальными являются температуры в 25-30 градусов, а дыхание осуществляется и при более высоких температурах.

Степень выносливости, критические точки, оптимум и пессимум отдельных особей вида не совпадают. Это определяется наследственными, физиологическими, возрастными и половыми особенностями. Например, икра лососей развивается при температуре от 0 о С до +12 о С, а взрослые особи легко переносят колебания от –2 о С до +20 о С. Экологическая валентность вида шире экологической валентности отдельной особи.

К каждому фактору виды приспосабливаются независимым путем. Степень выносливости к какому-либо фактору не означает такой же приспособленности к другому. Виды, хорошо переносящие низкие температуры, необязательно должны быть устойчивы, например, к высокой влажности. Набор экологических валентностей вида по отношению к разным факторам составляет его экологический спектр.

Результаты влияния экологических факторов могут сильно отличаться, в зависимости от того, как - раздельно или в совокупности - они действуют. Например, даже не очень сильный мороз становится ощутимым для людей и животных, если сопровождается ветром или высокой влажностью, так как эти два фактора ведут к усиленному охлаждению организма. Даже летом, во время дождя, мелкие зверьки с мокрой шерстью могут погибнуть от переохлаждения.

Немецкий агрохимик Ю. Либих в 1840 г. предположил, что выносливость организмов определяется самым слабым местом в его экологических потребностях. При изучении сельскохозяйственного производства им было установлено, что урожай зерна обуславливается не теми питательными веществами, которых в почве достаточно, а теми, которых не хватает, которые присутствуют в недостающих количествах. Причем один элемент не может быть заменен другим. Ю. Либих сформулировал закон минимума: рост растений ограничивается недостатком хотя бы одного элемента, количество которого ниже необходимого минимума. В дальнейшем этот закон был развит в закон об ограничивающих факторах. Возможность существования вида определяется не благоприятными условиями зоны оптимума, а чаще всего экстремальными, критическими значениями. Наиболее значимым выступает тот фактор, который больше всего отклоняется от оптимальных для организма значений. Экологический фактор, интенсивность которого приближается к пределу выносливости или выходит за него, называют ограничивающим. Такими факторами в экологии видов могут быть сильные весенние и ранние осенние заморозки, многоснежные или малоснежные суровые зимы и т.д. Представление об ограничивающем влиянии не только минимума, но и максимума развил В.Шелфорд в 1913 г.: лимитирующим фактором существования вида может быть как минимум, так и максимум экологического фактора, диапазон между которыми определяет величину толерантности, выносливости организма к данному фактору. Образно говоря, плохо и недокормить, и перекормить - все хорошо в меру.

Говоря об общих принципах действия экологических факторов важно отметить, что в современных условиях важнейшую роль играет не природная обстановка, а изменения, внесенные в нее человеком. Человек, кроме прямого действия на живые организмы, чаще всего кардинально меняет среду обитания, заставляя организмы приспосабливаться к новым для них условиям существования.



Понравилась статья? Поделиться с друзьями: